Consulter les offres d’emploi

PhD Position - Targer trial emulation - Grenoble
Publiée le 08/07/2025 12:47.
Thèse, Laboratoire HP2, U1300, Univ. Grenoble Alpes, Inserm - Faculté de Médecine, Grenoble.
Entreprise/Organisme :Université Grenoble Alpes
Niveau d'études :Master
Sujet :Exploring the impact of data sources and methodological choices on the estimation of drug efficacy through the emulated target trials framework
Date de début :November 2025
Durée du contrat :3 years
Rémunération :2200 € (brut)/month
Description :Project To access the market, the benefits of medications must be supported by solid evidence. Randomized controlled trials (RCTs) are considered the gold standard for producing such evidence because they provide a rigorous framework. Yet, increasing access to large databases and recent methodological advances such as target trial emulation offer new perspectives to produce valid causal inferences on the risk-benefit of medicines. The objectives of this project are to explore the feasibility of target trial emulation using different types of observational data (administrative vs. electronic health records) and to evaluate the heterogeneity of treatment effect estimates based on methodological choices. By better understanding the sources of variation in effect estimates between RCTs and emulated studies, this project will provide key insights into the reliability of these approaches in decision- making regarding the market approval and reimbursement of medications. Main activities Literature review and conception of target trials protocols, data management, data analysis, data reporting, and article writing. Skills Technical skills in data management and analysis (SAS or R) are required. Knowledge on causal inference, clinical research and drug development would be preferred, and previous experience with the French SNDS would be a great asset. Languages: French or fluent English reading, writing and speaking
En savoir plus :https://www.univ-grenoble-alpes.fr/
PhD Position_HP2_Roustit_Giai.pdf
Contact :matthieu.roustit@univ-grenoble-alpes.fr
PhD Position: Deep Generative Models of Physical Dynamics
Publiée le 11/06/2025 17:44.
Référence : PhD Position Deep Generative Models of Physical Dynamics, Sorbonne Université, Paris,.
Thèse, Paris.
Entreprise/Organisme :Sorbonne Universite, Institut des Systèmes Intelligents et de Robotique (ISIR)
Niveau d'études :Master
Sujet :Abstract: AI4Science is an emerging field investigating the potential of AI to advance scientific discovery, with deep learning playing a central role in modeling complex natural phenomena. Within this context, deep generative modeling—which already enables the synthesis of high-dimensional data across modalities such as text, images, and audio—is now opening new avenues for simulating and understanding complex physical systems. This PhD project aims to explore and advance generative deep learning architectures—such as diffusion models, flow-matching networks, and autoregressive transformers—for modeling complex physical dynamical systems arising in domains such as climate, biology, and fluid mechanics. These models hold strong potential for learning flexible, data-driven representations of physical laws. By developing generalizable, cross-physics generative models, this research contributes to the broader vision of AI4Science: accelerating scientific discovery through learned simulation and abstraction.
Date de début :November or December 2025
Durée du contrat :36 mois
Rémunération :2200 per Month Gross Salary + possible teaching vacations
Secteur d'activité :Computer Science, Artificial Intelligence, Machine Learning
Description :This PhD project aims to explore and advance generative deep learning architectures—such as diffusion models, flow-matching networks, and autoregressive transformers—for modeling complex physical dynamical systems arising in domains such as climate, biology, and fluid mechanics. These models hold strong potential for learning flexible, data-driven representations of physical laws. By developing generalizable, cross-physics generative models, this research contributes to the broader vision of AI4Science: accelerating scientific discovery through learned simulation and abstraction. Research Objectives The overarching research question is: Can we develop generative models that learn structured, physically grounded representations of dynamical systems—enabling synthesis, adaptation, and generalization across physical regimes and multiphysics settings? It unfolds into several complementary directions: Latent Generative Models for Physical Dynamics The objective is to design generative models—such as diffusion, flow-matching, or autoregressive models—that learn compact and interpretable latent representations of spatiotemporal dynamics governed by PDEs. These models should: • Capture uncertainty and multimodality in solution trajectories. • Generalize across parametric variations. Learning Across Multiphysics Systems To enable transfer learning across heterogeneous physics, we will explore shared latent representations across families of PDEs: • Using encode–process–decode frameworks. • Applying contrastive or multitask training to uncover reusable physical abstractions. • Designing models invariant to space/time resolution and units. This direction builds toward foundation-like models that capture generalizable physics priors across simulation families. Few-Shot and In-Context Generalization to New Physics To support scientific modeling in data-scarce settings, we will develop methods for few-shot generalization such as: • Fine-tuning latent priors to new PDE systems using limited examples. • Exploring meta-learning and prompt-based adaptation techniques (inspired by in-context learning in language models). • Incorporating known physical constraints into the generative process. The goal is to enable rapid and physically consistent adaptation to previously unseen dynamics with minimal data and supervision. Position and Working Environment The PhD studentship is a three years position starting in October/November 2025. It does not include teaching obligation, but it is possible to engage if desired. The PhD candidate will work at Sorbonne Université (S.U.), in the center of Paris. He/She will integrate the MLIA team (Machine Learning and Deep Learning for Information Access) at ISIR (Institut des Systèmes Intelligents et de Robotique). References Chen, W., Song, J., Ren, P., Subramanian, S., Morozov, D., & Mahoney, M. W. (2024). Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning. 1–21. http://arxiv.org/abs/2402.15734 Hao, Z., Su, C., Liu, S., Berner, J., Ying, C., Su, H., Anandkumar, A., Song, J., & Zhu, J. (2024). DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training. Icml. http://arxiv.org/abs/2403.03542 Kassai Koupai, A., Benet, J. M., Yin, Y., Vittaut, J.-N., & Gallinari, P. (2024). GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning. NeurIPS. https://geps-project.github.io/ Kirchmeyer, M., Yin, Y., Donà, J., Baskiotis, N., Rakotomamonjy, A., & Gallinari, P. (2022). Generalizing to New Physical Systems via Context-Informed Dynamics Model. ICML. McCabe, M., Blancard, B. R.-S., Parker, L. H., Ohana, R., Cranmer, M., Bietti, A., Eickenberg, M., Golkar, S., Krawezik, G., Lanusse, F., Pettee, M., Tesileanu, T., Cho, K., & Ho, S. (2024). Multiple Physics Pretraining for Physical Surrogate Models. 1–25 http://arxiv.org/abs/2310.02994 Serrano, L., Wang, T., le Naour, E., Vittaut, J.-N., & Gallinari, P. (2024). AROMA : Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields. NeurIPS. Serrano, L., Kassai, A., Wang, T., Erbacher P., Gallinari, P., (2025) Zebra: In-Context Generative Pretraining for Solving Parametric PDEs. Zhou, A., Li, Z., Schneier, M., Buchanan Jr, J. R., & Farimani, A. B. (2025). TEXT2PDE: Latent Diffusion Models for Accessible Physics Simulation. ICLR.
En savoir plus :https://pages.isir.upmc.fr/gallinari/open-positions/
2025-05-01-PhD-Description-Generative-models-Physics.pdf
Contact :patrick.gallinari@sorbonne-universite.fr
Ingénieur(e) Data Analyste en pharmacoépidémiologie
Publiée le 19/05/2025 09:45.
CDD, 270 boulevard de Sainte Marguerite, 13009 Marseille.
Entreprise/Organisme :Assistance Publique – Hôpitaux de Marseille
Niveau d'études :Master
Date de début :Dès que possible
Durée du contrat :1 an renouvelable
Rémunération :https://www.emploi-collectivites.fr/grille-indiciaire-hospitaliere-ingenieur-hospitalier-ih/4/101.ht
Description :Grade et contrat Ingénieur hospitalier (rémunération selon expérience conformément à la grille correspondante) CDD 1 an renouvelable CA et RTT Poste à pourvoir dès que possible Site et service Assistance Publique – Hôpitaux de Marseille Hôpital Sainte Marguerite 270 boulevard de Sainte Marguerite, 13009 Marseille Service de pharmacologie clinique et pharmacovigilance (cheffe de service : Pr Joëlle Micallef) Unité de pharmacoépidémiologie Organisation du temps de travail et horaires • Poste de jour : Oui • Poste à repos fixe : Oui • Poste à temps plein : Oui • Possibilité d’évolution du poste : Oui • Amplitude horaire du service : 8 h 30 – 19 h 00 • Horaires du poste : 9 h 00 – 17 h 00 avec pause déjeuner, du lundi au vendredi, hors samedi, dimanche et jours fériés Missions générales de l’emploi Le poste à pourvoir est un poste d’ingénieur avec une compétence de Data Analyste pour des projets de pharmacoépidémiologie. Ces projets portent sur l’évaluation de l’utilisation, du mésusage et des risques des médicaments psychoactifs, à partir du Système national des données de santé (SNDS). Ces projets sont coordonnés par le Service Hospitalo-Universitaire de Pharmacologie Clinique et Pharmacosurveillance de l’Assistance Publique – Hôpitaux de Marseille qui a une expérience de plus de 20 ans pour la recherche et la conduite d’études en pharmacoépidémiologie. La personne recrutée sera en charge du traitement des données du SNDS, en lien direct avec les porteurs du projet. La personne suivra les formations règlementaires pour accéder au portail sécurisé du SNDS (REQ-054-AM, REQ-256-AM et REQ-254-AM ; cf ci-dessous), afin de réaliser le data management et les analyses statistiques. Activités principales • Constituer les jeux de données exploitables à partir de données brutes extraites du SNDS, en fonction des analyses prévues dans le protocole • Construire les variables nécessaires à l’analyse à partir des informations contenues dans les différentes tables d’intérêt et en vérifier la cohérence • Effectuer les analyses statistiques prévues dans le protocole, vérifier les conditions d’applications et proposer des alternatives • Diffuser et valoriser des résultats sous forme de rapports techniques ou d’articles • Veiller à la reproductibilité et à la documentation des traitements réalisés Formation et expérience requises • Master ou doctorat en pharmacoépidémiologie, épidémiologie, statistiques, bio-informatique ou santé publique • Expérience appréciée dans l’utilisation des données du SNDS à des fins de recherche, en particulier dans le domaine de la pharmacoépidémiologie Qualités requises • Travailler en équipe et interagir avec différents interlocuteurs (pharmacologues, pharmacoépidémiologistes, médecins, pharmaciens, partenaires scientifiques) • Capacité à apprendre et s’adapter (langages informatiques, méthodes statistiques et de pharmacoépidémiologie) • Sens de l’organisation et de la planification • Autonomie • Raisonnement analytique • Curiosité intellectuelle Connaissances souhaitées ou engagement à les acquérir • Formations « Architecture et données du SNIIRAM/SNDS » (REQ-054-AM, 1 jour, e-learning), « Données d’extraction DCIR pour les accès sur projet » (REQ-256-AM, 2,5 jours, Paris) et « Initiation au PMSI à travers le SNDS » (REQ-254-AM, 3 jours, Paris) pour accéder au SNDS • Traiter des données, manipuler et requêter une base de données volumineuse • Programmer dans un environnement informatique contraint (portail sécurisé du SNDS) • Langages informatiques SQL (Oracle) et R (RStudio), éventuellement SAS (Entreprise Guide) • Statistiques multivariées, analyse de données censurées (modèle de Cox, variables dépendantes du temps), analyse de séries chronologiques (ARIMA) • Connaissance du SNDS • Connaissance en pharmacoépidémiologie ou en épidémiologie • Lecture de l'anglais scientifique et technique Modalités de candidature CV et lettre de motivation à thomas.soeiro@ap-hm.fr et joelle.micallef@ap-hm.fr
En savoir plus :https://fr.ap-hm.fr/service/pharmacologie-clinique-et-pharmacosurveillance-hopital-sainte-marguerite
Ingénieur(e) Data Analyste pour un projet de pharmacoépidémiologie 20250516.pdf
Contact :thomas.soeiro@ap-hm.fr
Researcher in clinical evaluation and regulation of Digital Medical Devices
Publiée le 14/04/2025 09:41.
CDD, Paris (75), France.
Entreprise/Organisme :Inria
Niveau d'études :Master
Date de début :Between June and August 2025
Durée du contrat :2 years
Rémunération :According to experience.
Secteur d'activité :Clinical evaluation ; regulation.
Description :The HeKA team at Inria, Inserm, and University Paris Cité is seeking a motivated researcher to join the SMATCH (Statistical and AI based Methods for Advanced Clinical Trials CHallenges in Digital Health) project, which is part of the PEPR (“Programme et Equipements Prioritaires de Recherche” - Priority Research Programs and Equipment) Santé Numérique (Digital Health), co-leaded by Inserm and Inria. The objective of the SMATCH project is to develop and apply statistical and AI- based methods with the ultimate goal of accelerating the development of medical interventions (drugs and DMDs) during their evaluation in clinical trials. The consortium is made up of 16 teams, mainly from Inria and Inserm Centers recognized in this field, bringing a unique and complementary expertise in data sciences and AI applied to health problems and specifically to clinical trials. AI-based computational models can be used by health care professionals or patients within DMD (using the definition of EU regulation 2017/745) aiming at preventing, diagnosis, monitoring, treating or alleviating disease. These devices impact the health outcome of individuals as any other treatment, but they present many methodological challenges in their clinical evaluation. Further, regulators, are struggling in approving and labelling these DMDs as the clinical evidence provided by stakeholder is heterogeneous. This position will contribute to the development of a framework and guidelines for trials or study designs that could be used to evaluate DMDs. This work will be done with the collaboration of the Digital Health department of the HAS.
En savoir plus :https://recrutement.inria.fr/public/classic/fr/offres/2025-08764
2025-08764.pdf
Contact :sandrine.boulet@inria.fr
Permanent research engineer position as Head of Hub Algorithmics & AI pole
Publiée le 07/04/2025 16:24.
Référence : Permanent research engineer position as Head of Hub Algorithmics & AI pole.
CDI, Paris 15eme.
Entreprise/Organisme :Hub de bioinformatique et biostatistique de l'Institut Pasteur
Niveau d'études :Master
Durée du contrat :CDI
Secteur d'activité :bioinformatics, artificial intelligence, management
Description :The Hub of Bioinformatics and Biostatistics provides analytical support to research units and platforms at the Institut Pasteur. The Hub is committed to this mission through: Collaborating on scientific projects, submitted by research teams of our institute, to the Hub. Training scientific staff from the Institut Pasteur Paris or from other institutes of the international network of Instituts Pasteur. Developing tools and applications to be shared with the broader scientific community Interacting directly with scientist upon specific inquiries As head of the Algorithmics, AI, and Mathematical Modeling group, the recruited engineer will focus on applying and developing innovative AI solutions for genomics projects of the Institut Pasteur. He will oversee the group management and be accountable for its project portfolio. The recruited engineer will work with a team of computational biologists in a collaborative environment, interacting with other teams of the Hub, the Technology Department, the Computational Biology department, and the campus. As part of the Bioinformatics and Biostatistics Hub, the group lead will: Manage the group’s collaborative project portfolio Ensure the quality of work and scientific contributions of the engineers in the group Oversee administrative management and foster an open, collaborative work environment Support the professional development of team members Lead the methodological development in collaboration with the Computational Biology Department and the campus Represent the pole within the Technology Department and the campus As a member of the hub’s leadership team, the pole head will participate in the hub’s operational management and contribute to its strategy and implementation. Reporting: Reports to the Hub Leadership. Key Activities: Project planning and organization Project coordination, tracking, and resource management Thematic coordination of the group (methodological developments, best practices, etc.) Administrative management of the division Development of collaborators Workplace quality of life improvement Participation in hub leadership The group head role will represent approximately 50% of the workload. Additionally, the recruited candidate will act as a research engineer within the Hub, contributing to collaborative projects, teaching, and consulting in alignment with their leadership responsibilities. Profile: PhD/Master’s/Engineering degree in Computational Biology, Bioinformatics, Computer Science, Applied Mathematics, Biostatistics, or related fields At least 10 years of experience in a biomedical research institute and/or industry in computational biology, biostatistics, applied mathematics, or bioinformatics Proven expertise in deep learning, algorithmic approaches, and mathematical modeling applied to genomics Knowledge and experience in software development and best practices Strong leadership experience in group and/or project management in a complex organization; experience mentoring students Fluency in French and English, with experience working in multilingual environments Creativity and innovation Collaborative mindset, ability to manage complex and ambiguous situations Focus on professional development of team members To apply: Click on the following link and select the corresponding profile: https://hub-jobs2025.pasteur.cloud Please, submit your updated CV and a cover letter (motivation letter). You may indicate contact information for reference letters (3 max.). They will be automatically contacted when you validate your application.  We are a team committed to foster a fair, inclusive and diverse work environment. Diversity has been scientifically established as a key factor to improve scientific objectivity. Hence, all applicants will be evaluated solely based on qualification regardless of gender, gender identity, sexual orientation, race or disability.
En savoir plus :https://research.pasteur.fr/en/job/permanent-research-engineer-position-as-head-of-hub-algorithmics-
Contact :herve.menager@pasteur.fr
Clustering de données fonctionnelles avec application en océanographie
Publiée le 01/10/2024 09:26.
Référence : Clustering de données fonctionnelles avec application en océanographie.
Thèse, Conservatoire National des Arts et Métiers, 2 rue Conté 75003 Paris.
Entreprise/Organisme :Conservatoire National des Arts et Métiers, Laboratoire CEDRIC
Niveau d'études :Master
Sujet :Classification non-supervisée pour l'identification de paysages acoustiques homogènes
Date de début :Entre fin 2024 et début 2025 en fonction de la date de recrutement du candidat
Durée du contrat :3 ans
Secteur d'activité :recherche
Description :Voir pièce jointe
En savoir plus :https://vincentaudigier.weebly.com/uploads/1/7/3/1/17317324/these_cnam_shom_clustering.pdf
these_cnam_shom_clustering.pdf
Contact :vincent.audigier@cnam.fr

Page précédente  1  2  <3> 

 
 
©2025 SFdS
Société Française de Statistique
Institut Henri Poincaré
11 rue Pierre et Marie Curie
75231 Paris cedex 5
Tél. : +33 (0)1 44 27 66 60
Notre site a été supporté par :