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Diving into the reactor core

-
. A « Safe operation of nuclear reactors requires respecting a certain margin on
physical quantities that are subject to regulatory safety criteria.

aRAnN * Physical quantities like temperature, pressure or thermal power can be
{ measured.

* More complex physical quantities can be calculated but not directly
measurable.
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Diving into the reactor core

-
. - « Safe operation of nuclear reactors requires respecting a certain margin on
physical quantities that are subject to regulatory safety criteria.
aaEe * Physical quantities like temperature, pressure or thermal power can be

F: measured.

* More complex physical quantities can be calculated but not directly
measurable.

Thermal exchange | Departure from Nuc;leatg Boiling Ratio or DNBR is a
pressurized water-fuel physical quantity which gives the margin with respect to
cladding the boiling crisis in the reactor core that could appear in

an accidental situation.
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Diving into the reactor core

Safe operation of nuclear reactors requires respecting a certain margin on
physical quantities that are subject to regulatory safety criteria.

Physical quantities like temperature, pressure or thermal power can be

measured.

More complex physical quantities can be calculated but not directly

measurable.

Thermal exchange
pressurized water-fuel
cladding

Departure from Nucleate Boiling Ratio or DNBR is a
physical quantity which gives the margin with respect to
the boiling crisis in the reactor core that could appear in
an accidental situation.

 DNBR is assessed by numerical Thermal-
Hydraulic (TH) 3D two-phases reference
code on High Performance Computing
(HPC) for the safety analysis report.

« DNBR is assessed by the simplified
algorithm in the current embedded safety
system.
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context

 Thermal-Hydraulic 3D two-phases reference calculation is expected to be very close to the “reality”
but cannot be used in the safety system (too long, convergence issues, etc.). “It is very precise but too
slow”.

 DNBR simplified algorithm calculation by the safety system based on simple physics laws is penalized
to be sure to assess the worst case. But it involves a loss of margins. “It is less precise but very fast”.

« The main idea is to restore some margins (i.e. be close to the “reality”) using Deep Learning (DL)
techniqgues embedded in the safety system and to be very fast.
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Questions

How can we build such Deep Learning model?

How can we estimate the performance of this model and the uncertainty of the prediction?

Can we evaluate the quality/confidence of the uncertainty estimation?

Can we apply these uncertainty methods for critical applications like in nuclear reactor core?
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Content

. Artificial Neural Network in nuclear
safety system

2. Overview of uncertainty estimation
methods in Deep Learning

3. Application to DNBR safety system

4. Conclusions and open questions for
critical applications
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Artificial Neural Network
in nuclear safety system
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Deep Learning in safety system

« DNBR Box is an Artificial Neural Network trained on millions of Thermal-Hydraulic 3D two-phases
reference accidental simulations and implemented in a Field-Programmable Gate Array (FPGA) integrated
circuit in order to predict the DNBR using the same inputs as the current simplified algorithm used in the

safety system. “DNBR Box is very precise, can restore margins and it is very fast.”
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DNBR Box = Artificial Neural Network (ANN)
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DNBR Box performances

* Learning and validation of DNBR box:
database of millions of 3D core state-
points issued from neutronics-Thermal-
Hydraulics reference code simulations.

* Very good accuracy from performance

metrics.
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DNBR Box performances =

e Use 3 other datasets to test DNBR Box:
o Testing base (in-domain base);

o Phenomenological base: accidental situation
simulations;

o Out-Of-distribution (OOD) base: real normal
operating base (coming from an EDF nuclear
power plant). DNBR Box is trained on
accidental conditions, not normal ones.

. e . Out-0Of-
: Learning base Validation base . Phenomenological C
Metrics (80 %) (20 %) Testing base base Dlstglbutlon
ase
MSE 0.000244 0.000246 0.000836 0.000369 0.000045
Q2 0.9994 0.9994 0.9971 0.9987 0.8330

framatome
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Overview of uncertainty
estimation methods in
Deep Learning
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Uncertainty quantification methods in Deep Learning

» Several Uncertainty Quantification (UQ) methods exist depending on the number of inference (also called
forward pass) or based on the nature (deterministic or stochastic) of the model, as proposed by
Gawlikowski et al [8].

» Gradient Metrices'
= Additional Network

for Uncertainty”
= Distance w0 Training
Data®

* Differences in  theoretical framework, in
estimation time, in theoretical guarantees, in

programming implementation, etc.

* Focus on:
o Bayesian Neural Network (BNN) [1];

o Deep Ensembles (DE) [2];

» Prior Networks®

= Evidential Neural
Networks®

= Gradient penalties’

e ot o Monte-Carlo Dropout (MCDo) [3];
Variational Tnference®
« Stochastc Variationl o Mixture Density Network (MDN) [4, 9];
o Conformal Calibration/Prediction (CC) (not

*Modcl Pruning®’
# Distillation™

exclusively dedicated to DL) [5, 6, 7].

» Original works'?
= Stochastic MCMC™
® Theoretic Advances'®

® Diagonal Information
Matrix !

» Kronecker-
Factorization'®

® Sparse Information

Matrix'"

« Random Initialization/
Data Shuffling"*

» Bagging/ Boosting'®

= Single Training Run™

Reference [8]: Jakob Gawlikowski et al., A survey of uncertainty in deep neural
networks, arXiv:2107.03342, 2022.
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Common theoretical framework

* Predictive distribution for a prediction y given a dataset D and model parameters 6 is defined as:

p(ylx,D) = | p(y|x,6)p(6|D)d6.
\ . \ ’ J
Data Model
* p(0|D) is intractable in pratice => Need approximations like variational inference, Markov Chain Monte-
Carlo (MCMC), Laplace approximation, Monte-Carlo Dropout, etc.

* p(y|x,D) is also intractable => Need approximations like Deep Ensembles, Mixture Density Network, etc.
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Bayesian Neural Network

* Bayesian network methods treat weights in neural networks as probability distributions rather than fixed

values.
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* In Bayesian network [1]: p(@|D) is approximated by another distribution ¢(#) (variational inference)
considered as Multivariate Normal distribution. The training consists in minimizing the error made by this

approximation quantified by the Kullback-Leibler (KL) divergence:

)
DL(¢||p) = E, [logm -

* But p(@|D) is not known, so the training tries to minimize the Evidence Lower Bound (ELBO):

ELBO = E,, [log M] where p(D|0) is the likelihood.

q(6)
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Monte-Carlo Dropout

* In Monte-Carlo Dropout [3], the posterior distribution p(y|x,D) is approximated by applying (Bernoulli)
dropout during both training and inference and then performing multiple forward passes with different
dropout masks m; to obtain a distribution of predictions y; = f(x,0,m;) fort =1, ...,T.

o0

AN N

\ \ ! AN /
RN /AN A 1
NN Y |

 The final prediction is taken as the mean of the T stochastic forward passes, and the predictive
uncertainty can be estimated from the variance of the predictions:

1
E[ly] = pm t=1 Yt

. )

Varly] = p t=1(ye — E[y])?

* The model is trained using common loss function (MSE, Negative Log-Likelihood for instance).
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Deep Ensembles

* In Deep Ensembles [2], the posterior distribution p(y|x, D) is approximated by learning multiple parameter
settings (different neural structures, parameters initialization and training dataset) and averaging over
resulting M models:

1
p(ylx, D) =+ Xm=1Pa,, O/|x, 0n).

e
o
: 0 : 5 :
° . ° / q 2
. . . WA W A
: : : te,, (x) o e ta,, (%) ° o o te,, (%)
: ° e ° ° ° °
o » » 4 .+ ° e ° +...+ ° ° ° ° 0
L L] L4 02 ° ) ° ° . ° ° ° 5
dE L A ) TRTEEE T e
° ® (] ° ° ° °
L) ° ° ° ) ° { ]
° o . ° : °
°
J . .

* po,, (¥lx, 0,) is approximated by a Gaussian distribution whose mean and variance are respectively the
mean and variance of the mixture M~ 1Y N (,ugm(x),aezm(x)) given by:

u(x) =M1 ¥ pe, ()
02(x) = M7 B (0, () + 1, (1)) — 42 ()
« The models are trained using the Gaussian Negative Log-Likelihood (NLL) loss in order to learn py_ and

2
O'gm.
ed
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Brief focus on aleatoric and epistemic uncertainties

* Predictive distribution p(y|x,D) is in general separated into aleatoric uncertainty (also called data
uncertainty) and epistemic uncertainty (also called model uncertainty).

* |t means that we expect that far from the data, the epistemic uncertainty is higher than the aleatoric one.

» Deep Ensembles give a way to assess aleatoric and epistemic uncertainties:

02@) = M7 ) (05, () + 113, (1) = ()

=My of @MY (4 (1) - ()
" ]E[agzm] + Var ,uém(x)].

\ ] | J
| /

Aleatoric  Epistemic
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Mixture Density Network

* In Mixture Density Network [4, 9], the posterior distribution p(y|x,D) is assumed to be composed of
parameters constructing a Gaussian mixture mode:

p(ylx,D) = ¥X_ m, CON (y|pe (%), 21 (%)) where m(x) are the mixture weights (probabilities) with K Gaussian,
Ur (x) the means and %, the covariances.

o000 OOGOOSOSO
=
=

* The final prediction is taken as the mean of the Gaussian mixture and the predictive uncertainty can be
estimated from its variance:

Ely|x] = XK., m(x) 1 ()
Varly|x] = ;£=1 () 2 (o) + SK e 00 || () — By 7 6o s GO ||
\ J

|
Aleatoric Epistemic
* The model is trained using the NLL of the observed data weighted by the mixture weights.
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Conformal calibration/prediction

It is based on the idea of using a training set to generate a set of "conformity scores” that capture the
similarity between a test example and the training examples. These conformity scores are used to
quantify the uncertainty associated with each prediction.

Split conformal prediction is the most widely-used version of conformal prediction.

It is a straightforward way to generate prediction sets for any model. Suppose (X;,Y)i=1..n and
(Xtest, Yiest) are i.i.d (or weaker condition of exchangeability).

Then g is defined as:

§ = inf{q: |[{i:s (XY i)<q}| > [(n+1)(1—a)]}_

n n

The resulting prediction sets is defined as:

CX) = {y:s(X,y) < g} where s(X,y) are calibration or conformal scores.

Then:
P(Ytest € C(Xtest)) =21 - a.

Cf. Conformal online model aggregation talk of Aaditya Ramdas.

UQ in ANN for critical applications — LNE — 01/08/25 © Framatome - All rights reserved

fl'amatome / Framatome know-how / Export Control - AL: 0EOO1 ECCN: N

21



Application to DNBR
safety system
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Quality of the uncertainty estimation

» Prediction Interval Coverage Probability (PICP) represents the percentage of test predictions that fall into a
prediction interval, defined as:

c
PICP = —
n

where n is the total number of predictions and ¢ the number of ground truth values that are actually
captured by the predicted intervals.

* Mean Prediction Interval Width (MPIW) evaluates the average certainty of the model:

1
MPIW = n ?zl(yupperi - yloweri)'

* Signed Quantile Calibration Error (sQCE):

M
1
SQCE = M Zl(pobs(pm) — Pm)

where M is the number of confidence levels p,, and p,ps(Pm) is the observed probability calculated as the
fraction of predictions that fall into the p,, -confidence interval of their respective predictive distributions.
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Results for OOD dataset

« DNBR Box is designed to be efficient during accidental conditions (it is trained on accidental core
configurations). But in real life, the occurrence of transients is very rare, but cannot be ignored. So, DNBR
Box will be used mostly in normal conditions, so in OOD.

Prediction Mean

Mean interval prediction Slgne.d Negative Log
Mean squared : : Quantile 2
Methods error (MSE) absolute coverage interval width Calibration Likelihood
error (MAE) probability (MPIW) at 95 Sior (GOCE) (NLL)
(PICP) at 95 % %

DNBR Box 0.000045 0.0061 - - - -
MDN 0.000075 0.0076 100.00 0.0792 0.212 -3.81
BNN 0.000486 0.028 94.40 0.0563 -0.282 -3.33
MCDo 0.004052 0.064 100.00 0.204 0.236 -2.90

DE 0.000490 0.016 100.00 0.101 0.0983 -3.51
CC 0.000045 0.0061 100.00 0.0627 0.206 -4.05

* No clear insight of a better method with respect to another, as already observed in literatures [17, 19, 21,
24, 25, 26].
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Results for OOD dataset

« All the methods don’t give calibrated uncertainty (cf. Gaél Varoquaux talk).
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Results for OOD dataset

Prediction accuracy

Quality of the
uncertainty
estimation

Well-calibrated

Easy to implement

Easy to train

Easy to use
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Conclusions and open
questions for critical
applications
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Conclusions

* It is possible to assess complex physical quantities like DNBR using DL techniques.

« DNBR Box computes the DNBR as precise as the TH reference code and faster than the simplified
algorithm used in the safety system.

* There are many Uncertainty Quantification methods for DL with pros and cons.

* For DNBR Box, there is no clear agreement about the technique to use.
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fl'amatome / Framatome know-how / Export Control - AL: 0EOO1 ECCN: N



Open questions

* For critical applications like in nuclear safety, aeronautics, autonomous vehicle, medicine, etc. it is
important (even mandatory regarding the safety authorities) to be confident on the predictions of the
model and on its uncertainties.

« Can we train a model to predict with a good accuracy and in the same time to estimate with a good
confidence the uncertainty?

* Can we get a theoretical bound of the error?
« Can we trust the uncertainty estimation in test time, OOD time?

* Can we implement these methods on specific hardware like Field Programmable Gate Array (FPGA)?
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Open questions

* To tackle these problems, Eline Pot will begin a PhD thesis with Framatome (M. Segond, L. Lefebvre), EDF
R&D (M. Keller) and CentraleSupélec (J. C. Pesquet).

* We plan to:

o study some current UQ methods, perform benchmarks (in-domain and OOD), discuss some
performance metrics, etc.

o develop some new UQ methods if necessary to be compliant with embedded system.
o study of Lipschitz regularity of deep neural networks [10, 11] for robustness to noisy inputs data.
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DNBR Box neural structure

* Neural structure hyper-optimization using genetic algorithm: find
the best model with respect to the Mean Squared Error (MSE)
while minimizing the complexity of the neural network, i.e. the
number of free parameters (weights and biases) by introducing a
regularization term in the fitness to optimize, thus following an
“Occam’s razor like” approach.

Thermal power * This allows implementing DNBR Box in a

Pressure FPGA.

TH state-points

—_—

(5 scalars) Enthalpy rising factor ::'

Temperature

_ Mass flow rate e Miny ., ,DNBR(X,y,z)

Image of
the power Axial power
in the core distribution

(vector of 31 points) ~2800 parameters
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DNBR Box training phase

* Lack of online physical modeling must be compensated by a big and representative database to train and
validate the model.
» A database is sampled on 4-loops Nuclear Power Plant designs (1450 MWe and 1300 MWe reactors):

o 1000 Thermal-Hydraulic state-points ® 6000 axial power distributions computed by the core
neutronics-TH 3D simulation code => 6 x 10°® data 3D core simulations.

o Data filtering on DNBR range of interest for safety.
o Leads to 3 x 10° core state-points data => big data set to process.
o Representative of accidental/incidental transients.

Cobweb
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Benchmark on phenomenological dataset
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Benchmark on phenomenological dataset

* No clear insight.

Prediction Mean
Mean Mean interval prediction Signed Negative
Methods squared Absolute coverage interval Quantile Log
err?)r (MSE) | error (MAE) probability Wilelug Calibration Likelihood
(PICP) at 95 (MPIW) at | Error (sQCE) (NLL)
% 95 %

DNBR Box 0.00037 0.0167 - - - -
MDN 0.000555 0.021 56.35 0.0481 -0.306 -2.60
BNN 0.00137 0.035 23.20 0.0575 -0.463 -0.74
MCDo 0.000201 0.0125 94.47 0.120 -0.233 -2.75

DE 0.00069 0.024 78.45 0.0605 -0.333 -2.87
CcC 0.00037 0.0167 89.50 0.0627 -0.126 -3.41
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