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1. Introduction



Physical Simulation &Nuclear Industry

The nuclear industry studies the physics of
stochastic processes (multiscale methods) :
▪ Particle Transport - Quantum Mechanics
▪ Complex Systems - Statistical Mechanics

Statistical Mechanics describes the behavior of a
macroscopic system in terms of the behavior of
its microscopic elements through the application
of probability.

Figure 1 : extracted from M.Karcz’s PhD manuscript
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Statistical Mechanics 101

We want to compute a physical quantity O. It corresponds to computing an average over all
possible physical states x

⟨O⟩ =
∫

dx p(x)O(x) ≃
N∑
i=1

1
NO(x(i))

where x(i) ∼ p(x) ∝ e−E(x)/T and E(x) is the energy of the state x.

▪ The computation of the energy E(x) can be expensive.
▪ The sampling of p(x) can be difficult (local extrema, high dimensions, etc...).

Note : computing ⟨O⟩ using deterministic forces does not solve the challenges : xt+1 = xt − ∇E(xt) +
√
2Tϵ where ϵ is

a Gaussian rv.
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ML into the Physical Simulation

The idea is to include ML cheap estimates into the
numerical computation.

▪ Replace the computation of the energy by Eθ(x).
▪ Replace the sampling and/or the pdf by pθ(x).

Either

θ typically correspond to the parameters of a neural
network.

What is the impact of this change in the computation of
physical quantities?

Figure extracted from ....| Eiji Kawasaki - SFdSUncertainty quantification in machine learning January 6th 2024 3



Uncertainty in AI driven simulation

▪ Using machine learning, we expect a difference between themodel prediction and the
actual value.

▪ We can compute what is the likelihood of an outcome given that some aspects of the
system are not exactly known. What is the impact of this uncertainty in a physical
computation?

Modeling a physical phenomenon

Application examples : ML interatomic potentials, Boltzmann generators. Phase diagram - phase
transition
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2. Learning the Energy
- D.Tzivrailis (2023-2026)



Uncertainty in the Energy Prediction

The goal here is to accelerate the physical simulation by learning how to estimate the physical
energy E(x) that can be expensive to compute. In Watanabe et al., 2021, it can be seen that the tail of
the residual distribution is heavy.

| Eiji Kawasaki - SFdSUncertainty quantification in machine learning January 6th 2024 5



Energy Learning Task

▪ We design and train a Neural Network that
computes an approximation of the energy Eθ(x).

▪ It is trained by minimizing the loss∑
i
(Eθ(xi)− Ei)2

computed using the data set D = {..., (xi, Ei), ...}

Regression Task

As a toy model, we consider a physical system containing a phase transition between ordered and
disordered x states.

| Eiji Kawasaki - SFdSUncertainty quantification in machine learning January 6th 2024 6



Physical Simulation Failure

We run a Markov Chain Monte Carlo computation,
where the Metropolis-Hastings acceptance writes

a(x → x′) = min

(
1, e− Eθ (x′)

kBT /e− Eθ (x)
kBT

)
(1)

Naively replacing the exact value of E(x) by the
Neural Network approximation Eθ(x), we notice
that the physical computation is not correct !
This is due to :
▪ the (epistemic) noise in the prediction
▪ ”out-of-distribution” inputs
▪ input domain shift
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Physical Simulation Fix
We need to compute the prediction uncertainty p(E|x,D) which is difficult for deep learning models
(examples of methods include Ensemble, BNN, Last Layer, Deep Kernel Regression). There are many
methods to take into account a noisy estimate of the target pdf in a MCMC sampling scheme :

▪ MH algorithm generalization based on assumption over the noise σ(x)
▪ Bayesian inference (Bardenet et al., 2017) : divide-and-conquer, subsampling-based

By taking into account the expected difference

σ(x) = Eθ(x)− E(x) (2)

while modeling the predictive uncertainty of the
energy we can correct the physical computation.
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3. Learning the distribution
-M.Karcz (2021-2024)



Physical Simulation Failure

The acceptance rate of configurations proposed by a normalizing flow in a Metropolis-Hastings
algorithm is close to 100% for a small system, and drops to less than 40% for a medium-sized system.
Figure extracted from Del Debbio et al., 2021.
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Physical Simulation vs Statistical Learning

▪ Numerical Simulation : knowledge in
the form of simulated / solved laws and
equations.

▪ Machine Learning : based on a
collection of observations used to
optimize the parameters of an effective
model.

Physical PhenomenaModeling
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Machine Learning Errors

Figure 2 : borrowed from G. Daniel.

Main idea :make an approximation of the target systemby an effective variationalmodel where
we optimize the parameters.

What about in physics?
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Statistical Physics and Statistical Learning
Variational approaches are ubiquotous in physics. For example, we optimize the variational
parameters θ by minimizing the variational free energy F̃pθ

p(x) = e− E(x)
kBT

Z − kBT ln Z = Fp ≤ F̃pθ (3)

This inequality is known as the variational principle of statistical mechanics. Computing the free
energy is an intractable problem for all but the simplest models. A powerful approximation method
is mean-field theory.

We use a non interacting system,

EMF
θ (x) =

∑
i
Eθ(xi) (4)

Therefore,

pMF
θ (x) =

∏
i
pθ(xi) ∝

∏
i
e−Eθ(xi) (5)

where we can analytically optimize θ.
| Eiji Kawasaki - SFdSUncertainty quantification in machine learning January 6th 2024 12



Inverted Variational Auto-Encoder - arXiv :2408.14928

We can improve the mean field approximation by taking into account interactions, we need to
introduce some auxiliary variables y.

pθ(x) =
∫

p(y)pθ(x|y)dy ̸=
∏
i
pθ(xi) (6)

where p(y) =∏i p(yi) is some arbitrary tractable distribution. For example,

pθ(x|y) ∝
∏
i
e−xiθi(y) (7)

where the function θ(z) is a neural network. We have,

Fp ≤ F̃pθ = E y∼p(y)
x∼pθ(x|y)

[
−E(x)
kBT

+ log
qϕ(y|x)

p(y)pθ(x|y)

]
(8)

This objective is called the Evidence Lower Bound (ELBO) and it corresponds to the negative
variational free energy in physics.
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PULSE algorithm - arXiv :2408.14928
Cd(T) =

⟨
e−

Efd(xc)
kBT

⟩
(9)

Average defect concentration in
uranium-plutoniummixed oxides.

Based on this idea Karcz et al., 2024 : Partition function Unsupervised Learning Sampling and
Evaluation for disordered compounds.
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4.Conclusion



Conclusion

Summary
▪ Variational approaches are a link between physical

simulation and machine learning that can be used :
PULSE (Karcz et al., 2024)

▪ KARCZ Maciej PhD defence on October 2024 :
”Approches d’apprentissage automatique génératif
pour la modélisation à l’échelle atomique de composés
présentant un désordre chimique”

▪ Prediction Uncertainty Quantification is necessary but
can be difficult.

OnGoingWork &Open for collaborations!
▪ Link Physical Computation & Machine Learning
▪ What about GenerativeModeling Uncertainty?

Thanks to the collaborators : Emeric
BOURASSEAU (CEA), Luca MESSINA
(CEA), Alberto ROSSO (CNRS).
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