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1. Introduction



Physical Simulation & Nuclear Industry
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The nuclear industry studies the physics of
stochastic processes (multiscale methods) :

= Particle Transport - Quantum Mechanics

= Complex Systems - Statistical Mechanics
Statistical Mechanics describes the behavior of a
macroscopic system in terms of the behavior of
its microscopic elements through the application

of probability. wm o T

Figure 1: extracted from M.Karcz's PhD manuscript
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Statistical Mechanics 101 2

We want to compute a physical quantity O. It corresponds to computing an average over all
possible physical states x

N 1 i
(©) = [ axp(r00) = 3 o)
i=1

where x() ~ p(x) o« e EX/T and E(x) is the energy of the state x.

= The computation of the energy E(x) can be expensive.

= The sampling of p(x) can be difficult (local extrema, high dimensions, etc...).

Note : computing (O) using deterministic forces does not solve the challenges : x¢.1 = Xt — VE(Xt) + V2Te where ¢ is
a Gaussian rv.
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ML into the Physical Simulation

A Boltzmann Generator
1. Sample G
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The idea is to include ML cheap estimates into the TS 1

numerical computation. ) | Tl T,
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§ = Replace the computation of the energy by Ey(x). e tﬁ
. Lenerate
= Replace the sampling and/or the pdf by pg(x). "i*"ih'-'-mM] jnl
0 typically correspond to the parameters of a neural
network.

What is the impact of this change in the computation of
physical quantities ?

Boltzmann distribution e

Figure extracted from ...
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Uncertainty in Al driven simulation RN

W Modeling a physical phenomenon
= Using machine learning, we expect a difference between the model prediction and the
actual value.

= We can compute what is the likelihood of an outcome given that some aspects of the
system are not exactly known. What is the impact of this uncertainty in a physical
computation?

Application examples : ML interatomic potentials, Boltzmann generators. Phase diagram - phase
transition
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Uncertainty in the Energy Prediction
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The goal here is to accelerate the physical simulation by learning how to estimate the physical

energy E(x) that can be expensive to compute. In Watanabe et al,, 202], it can be seen that the tail of
the residual distribution is heavy.
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Energy Learning Task

Test data

Regression Task

= We design and train a Neural Network that
computes an approximation of the energy Ey(x).

g

= [tis trained by minimizing the loss

> (Eo(x)) — E)?

I

Approximate Energy
8 ]

I I computed using the data set D = {..., (x;,E;), ...}

True Energy

As a toy model, we consider a physical system containing a phase transition between ordered and
disordered x states.

g | Eiji Kawasaki - SFdSUncertainty quantification in machine learning January 6th 2024 6



Physical Simulation Failure

We run a Markov Chain Monte Carlo computation,
where the Metropolis-Hastings acceptance writes

—
=

_Ep) _Ep(®
ax—x)=min (1, e %7 Je kT (

Naively replacing the exact value of E(x) by the
Neural Network approximation Ey(x), we notice
that the physical computation is not correct!

Thisis due to:
= the (epistemic) noise in the prediction
= "out-of-distribution” inputs
= input domain shift
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Physical Simulation Fix :
We need to compute the prediction uncertainty p(E|x, D) which is difficult for deep learning models

(examples of methods include Ensemble, BNN, Last Layer, Deep Kernel Regression). There are many
methods to take into account a noisy estimate of the target pdf in a MCMC sampling scheme :

= MH algorithm generalization based on assumption over the noise o(x)
= Bayesian inference (Bardenet et al, 2017) : divide-and-conquer, subsampling-based

- MCMC

60 ’ Correct MCMC
MCMC Approximation
50 |
By taking into account the expected difference
L, o(X) = Eg(X) — E(X) (2)
» " ‘ % while modeling the predictive uncertainty of the
o | energy we can correct the physical computation.
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3. Learning the distribution
- M.Karcz (2021-2024)




Physical Simulation Failure
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Acceptance

The acceptance rate of configurations proposed by a normalizing flow in a Metropolis-Hastings

algorithm is close to 100% for a small system, and drops to less than 40% for a medium-sized system.

Figure extracted from Del Debbio et al,, 2021.

g | Eiji Kawasaki - SFdSUncertainty quantification in machine learning January 6th 2024

9



Physical Simulation vs Statistical Learning

W( Physical Phenomena Modeling

= Numerical Simulation : knowledge in
the form of simulated / solved laws and
equations.

= Machine Learning : based on a
collection of observations used to
optimize the parameters of an effective
model.
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Machine Learning Errors
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Figure 2: borrowed from G. Daniel.

Main idea : make an approximation of the target system by an effective variational model where
we optimize the parameters.

What about in physics ?
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Statistical Physics and Statistical Learning %%

Variational approaches are ubiquotous in physics. For example, we optimize the variational
parameters ¢ by minimizing the variational free energy Fp,
E(x)
e kel ~
p(x) = 7 —kgTInZ = Fp < Fp, 3)

This inequality is known as the variational principle of statistical mechanics. Computing the free
energy is an intractable problem for all but the simplest models. A powerful approximation method
is mean-field theory.

We use a non interacting system,

o ; i

EF () = Ea(x) (4) J i
,- | S Y W A
Therefore, mnde '
pef () = [[po(xi) o [[eFo™) (5) |
i i 4 . o,
"1 111
where we can analytically optimize 6. i £
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Inverted Variational Auto-Encoder - arXiv :2408.14928' v %

We can improve the mean field approximation by taking into account interactions, we need to
introduce some auxiliary variables y.

Pat) = | POIPoxly)dy # [Tpot) (8)

i
where p(y) = []; p(y;) is some arbitrary tractable distribution. For example,
Pa(xly) o [T %40 @)
i

where the function 6(z) is a neural network. We have,

+1
keT % p(y)pe(xly)

—E(x) Qs (yX¥) )

Fo <Fpy =E yp(y)
x~pg (x|y)

This objective is called the Evidence Lower Bound (ELBO) and it corresponds to the negative
variational free energy in physics.
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PULSE algorithm - arXiv :2408.14928

Encoder Decoder

Sample Supercomputer
configurations energy computations
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Based on this idea Karcz et al, 2024 : Partition function Unsupervised Learning Sampling and

Evaluation for disordered compounds.
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4. Conclusion
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Conclusion f

Summary

= Variational approaches are a link between physical
. . . . Sample Supercomputer
simulation and machine learning that can be used : confgurations | —————3. WU
T—

PULSE (Karcz et al., 2024)
= KARCZ Maciej PhD defence on October 2024 :

"Approches d’apprentissage automatique génératif

pour la modélisation & I'échelle atomique de composés

résentant un désordre chimique” Train
= Prediction Uncertainty Quantification is necessary but PR
can be difficult. -
On Going Work & Open for collaborations! Thanks to the collaborators : Emeric

BOURASSEAU (CEA), Luca MESSINA

= Link Physical Computation & Machine Learning (CEA), Alberto ROSSO (CNRS)
, Alberto .

= What about Generative Modeling Uncertainty ?
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Thank you for your attention!
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