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Distribution-free predictive uncertainty quantification



Quantifying predictive uncertainty

(X,Y) e R x R random variables
n training samples (X, y(K)7_

Goal: predict an unseen point Y ("1 at X("*+1) with confidence

e How? Given a miscoverage level o € [0, 1], build a predictive set C,, such that:
P {Y<"+1> e, (X(”“))} >1—aq (validity)

and C, should be as small as possible, in order to be informative.
» Validity should be ensured

o in finite samples

o for all data distribution and underlying learnt model
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Distribution-free marginal validity is achievable

Conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al.,
2018) builds an estimated predictive set C, based on n data points.

'_[ Conformal prediction achieves marginal validity (Vovk et al., 2005) L

6a outputted by conformal prediction is such that for any distribution D on
(X,)), it holds:

P pe(ni1) (Y(”+1) e C, (X(”'H))) >1—a.
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Split Conformal Prediction (SCP)!2:3;

: regression toy example
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'Vovk et al. (2005), Algorithmic Learning in a Random World
2F’apadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)!:23; reg. toy example training step

» Learn (or get) /i

'Vovk et al. (2005), Algorithmic Learning in a Random World
2F’apadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)!:23; reg. toy example calibration step

» Predict with /i

» Get the |residuals|, a.k.a.

conformity scores

» Compute the (1 — a) empirical
quantile of
S = {|residuals|} -, U {+00},

noted g1, (5)

'Vovk et al. (2005), Algorithmic Learning in a Random World
2F’apadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)!:23; reg. toy example

prediction step

» Predict with /i

» Build Co(x): [1(x) £ g1 (S)]

'Vovk et al. (2005), Algorithmic Learning in a Random World

2F’apadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Distribution-free marginal validity is achievable: cont’'d

Conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al.,
2018) builds an estimated predictive set C, based on n data points.

'_[ Conformal prediction achieves marginal validity (Vovk et al., 2005) L

al outputted by conformal prediction is such that for any distribution D on
(X,)), it holds:

P pooi (Y<"+1) eC, (X("+1))) >1—a.

X Marginal coverage: Pprgns1) (Y(”H) € C, (X(”H))\X(”H):/x) >1—oa.
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Definition of distribution-free features conditional validity

C, = estimated predictive set based on n data points.

__| Distribution-free X-conditional validity | ‘

6a achieves distribution-free X-conditional validity if for any distribution D,

it holds:

a.s.

P oy (Y("+1) e C, (x<”+1)) |x("+1)) S 1-a
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Limits of distribution-free conditional predictive
uncertainty quantification




Informative conditional coverage as such is impossible

’_[ Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)* I

If (_A"a is distribution-free X-conditionally valid, then, for any D, for Dx—almost
all Dx—non-atoms x € X, it holds:

P {mes (@(X)) = oo} >1-—a.

— distribution-free X-conditional hardness result apply beyond CP
< X-conditional estimators are overly large even on easy cases

< the lower bound is tight

*An analogous statement is also available for the classification framework.
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Getting closer to X-conditional coverage

‘ X-conditionally valid ‘ Non X-conditionally valid

¥ o X-cov.: v/ X-cov.: X
Pathological” distribution
Length: v/ Length: not relevant
X-cov.: v X-cov.: ~
“Smooth” distribution oY oY
Length: X Length: v/

e Asymptotic (with the sample size) conditional coverage
— Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al.
(2021); Sesia and Romano (2021); Izbicki et al. (2022)

e Approximate conditional coverage

< Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)
Target P(Y(™D) ¢ G, (X(HD) [X(HD) € R(x)) > 1 - @

Non exhaustive references.
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Definition of distribution-free group conditional validity (GCV)

C, = estimated predictive set based on n data points.

G a set of “groups” (i.e., define G a random variable taking its values in G).

’_[ Distribution-free G-conditional validity (GCV) |

Ea achieves distribution-free G-conditional validity if for any distribution D
on (X,G,)), it holds that:

P oo (Y(n+1) eC, <X(n+1) G(n+1)> G n+1)) B o
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Hardness of distribution-free group conditional coverage

General GCV hardness result (z., Josse, Romano and Dieuleveut, 2024)° I

If any 6a is distribution-free G-conditionally valid then for any distribution
D, for any group g € G such that Dg(g) > 0, it holds:

P pe(n1) (mes (CA"Q (X(”+1),g>) — oo) >1—a—A0gh,
>1—a-— ’Dc(g)\/ﬁ.

J

Irreducible term: consider 6a outputting ) with probability 1 — « and ) otherwise.

Ag , term: smaller than Dg(g)vn+1

— gets negligible (making the lower bound nearly 1 — «) only for low probability
groups compared to n.

®An analogous statement is also available for the classification framework.
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Restricting the link between G and (X or Y) does not allow informative GCV

G 1L X hardness result (z., Josse, Romano and Dieuleveut, 2024) ]
J

If any al is GCV under G I X, then for any distribution D such that G I X,
for any group g such that Dg(g) > 0, it holds:

Ppen (mes (6a (X("+1),g)> = oo) >1-a—Agp > 1-a—Dg(g)Vn+ 1.

J

YIG |X hardness result (z., Josse, Romano and Dieuleveut, 2024) I

If any 6a is MCV under Y I G | X, then for any distribution D such that

Y LG | X, for any mask m such that % > Dg(g) > 0, it holds:

Ppey (mes (fa (X(”+1),g)> - oo) >1-a-Agp, > 1—a—2Dg(g)vVn + 1

. 7

= need to restrict both the link between G and X, as well as between G and Y.

Analogous statements are also available for the classification framework.
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Implications for GCV in practice

G-conditionally valid G-conditionally valid
even when G L (X, Y) | atmostif G L (X,Y)
-cov.: v/ -CoV.:

“Pathological” distribution G-cov G-cov.: X
Length: v/ Length: not relevant

-cov.: v/ -CoV.: ~7

“Smooth” distribution e T
Length: X Length: v/
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Application to learning with missing covariates




Missing values are ubiquitous and challenging

Mask M =
Y| X X Xs (My My Ms)
22 | b 6 3 0 0 0
19| 6 8 NA 0 0 1
Data: (X(k)’ MKk y(k))::1 19| 5 3 6 0 0 0
7 |NA 9 NA 1 0 1
13| 4 9 0 0 0
20 | NA NA 1 1 1 0
9 8 NA 4 0 1 0

< 29 potential masks.
<+ M can depend on X or Y (depending on the missing mechanism®).
= Statistical and computational challenges.

5Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika
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Supervised learning with missing values: impute-then-predict

Impute-then-predict procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ¢.

2@ -1 |-10] 6 | 0 a1 |10 6 | 0
2@ 4 fua| 2|2 6 u®| 4 45| 2| 2
2@ s | 1| 2 |wa u® s |12 |
@) o wa fwa | 1 u® 0 |as| 3 |1

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

n

data: “(Xé:s)(M(k))’ M(k)>, y (k)

UK =imputed X(k k=1

— we consider an impute-then-predict pipeline in this work.
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Goals of predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1 — «, i.e. build the smallest C,, such that:

| 1. Marginal Validity (MV) |

P {Y("+1) ec, (X(”“), M("H)) } >1-a (MV)

| 2. Mask-Conditional-Validity (MCV) |

P {y(n+1) cc, (X(”+1), M(n+1)) |M("+1)} Tioa (MCV)

OHt... But THE SOPTWARE

'OCTO L
H Docrote, Heres Are THe esuLts AD AN Weomo

o L .
& MY MEDICAL EXAMS \CAL FORM..
T | THhe TT26 T
Mesgfﬁw;,r ;zazAfzmor: THe PROBABILITY MGt Bg
CUrINGHOU ,

Illustrations @theoremlinger

€ _\ z
|>g/ 2\
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CP is marginally valid (MV) after imputation

Exchangeability after imputation (z., Dieuleveut, Josse and Romano, 2023)

Assume (X(k), M), Y(k))zzl are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ¢:

k n
<¢ <Xo(bs)(M(k))’ M(")) , Y(k)>k:1 are exchangeable.

= Conformal Prediction (CP), applied on an imputed data set still enjoys marginal
guarantees:

P {Y(n—i-l) c Q (X(n-ﬁ—l)’ M(n+1))} >1—a.
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CP is marginally valid on imputed data sets

Y =8TX+¢e B=1(1,2,-1)", X and ¢ Gaussian.
CQR (marginal validity)

. 1.0
| @
NSV
3
2 o8] ‘
)
<
2
< 0.6
F & S
SIS TR R R SRR R

v Marginal (i.e. average) coverage (MV) is indeed recovered!
X Mask-conditional-validity (MCV) is not attained
— Missing values induce heteroskedasticity

(supported by theory under (non-)parametric assumptions)
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Conformalization step is independent of the important variable:

the mask!

Observation: the «-correction term is computed = "]

among all the data points, regardless of their mask! ]

Warning: 29 possible masks

= Splitting the calibration set by mask is infeasible (lack of data)!

Initial calibration set

Test point
2] 1 |0 6 |1 -
3 0 1 :l
2@ 4 |ua | 2] 2
L
z®| 5 1 1 NA Calibration set used
z®| o [wa [wa | 1 L -10 ‘ —l

Test point

3‘NA NA| 1

Calibration set used

r NA\NA

17 /20



CP-MDA-Nested* achieves Mask-Conditional-Validity (MCV)

—[ Mask-conditional-validity of CP-MDA-Nested*

(Z., Josse, Romano and Dieuleveut, 2024)

-
J

Under the assumptions that:

o« ML (X,Y),

o (XK, MW, YT areiid.,
then, for almost all imputation function, CP-MDA-Nested* reaches (MCV) at
the level 1 — 2q, that is:

Py e & (X4, M) |t} B 1 g,

— Experiments beyond independence: under various MAR and MNAR
mechanisms, and to some extent when Y £ M|X, CP-MDA-Nested* maintains
empirical MCV.
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Validities of predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1 — «, i.e. build the smallest C,, such that:
| 1. Marginal Validity (MV) |

P {Y("+1> ec, (X("+1), /\//("H)) } >1-a. (MV)

\. J

| 2. Mask-Conditional-Validity (MCV) |

P{y("D) e c, (XD, mirtD) [plosD) | Tioa (MCV)

CP-MDA-Nested*

Exisiting approaches
(Z., Josse, Romano and Dieuleveut, 2024)

v
(MV) . v
(Z., Dieuleveut, Josse, and Romano, 2023)
(MCV) X v/ under M L (X,Y)
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Take-home-messages

e Distribution-free group-conditional-coverage is hard to ensure theoretically on

“rare” groups
e Weaker notions are empirically achievable
e These hardness results disappear if G L (X, Y)
e This strong assumption is relevant in the missing values context

e We propose an algorithm achieving MCV under G L (X, Y'), empirically
robust when G L (X,Y)
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Thanks for listening and feel free to reach out to us!

Questions?



https://arxiv.org/pdf/2405.15641
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