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Conformal prediction
Conformal prediction is a “wrapper” around regression or 
classification algorithms to provide uncertainty quantification.

 
quantile of scores

q1−α := 1 − α

{s(μ(Xi), Yi)}n
i=1

Pre-trained
prediction model

μ : 𝒳 → 𝒴

Held out data
{(Xi, Yi)}n

i=1

Score function
s : 𝒴 × 𝒴 → ℝ

For test point , we outputXn+1
C(α) := {y : s(μ(Xn+1), y) ≤ q1−α}

Theorem: If  
are iid from , then

{(Xi, Yi)}n+1
i=1

P
P(Yn+1 ∈ C(α)) ≥ 1 − α .

But, which model
should we choose?!

If we have  
candidate models,

we get  prediction sets. 

K

K



Abstract problem statement

Input: Sets  that are (arbitrarily) dependent, and 
satisfy .

Output: A single set  that combines them in a black-box 
manner and has (nearly) the same coverage guarantee.

C1, …, CK
P(Y ∈ Ck) ≥ 1 − α

C

Eg:  has coverage , but it is too conservative

 has coverage , but it is too anti-conservative

K

⋃
k=1

Ck 1 − α

K

⋂
k=1

Ck 1 − Kα
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First solution: majority vote

Define .CM := {y :
1
K

K

∑
k=1

1(y ∈ Ck) > 1/2}
Kuncheva et al.’03

Cherubin’19
Solari+Djordjilović’22

Theorem: P(Y ∈ CM) ≥ 1 − 2α .

Proof: Let  and note 

By Markov, 

ϕk := 1(Y ∉ Ck) 𝔼[ϕk] ≤ α .

ℙ(Y ∉ CM) = ℙ (
K

∑
k=1

ϕk ≥ K/2) ≤
2
K

𝔼 [
K

∑
k=1

ϕk] ≤ 2α .

Define 

Theorem:  

 is the union, and  is the intersection. 

Cτ := {y :
1
K

K

∑
k=1

1(y ∈ Ck) > τ}
P(Y ∈ Cτ) ≥ 1 −

α
1 − τ

.

τ = 0 τ = 1 − 1/K



Sometimes, the majority vote yields an interval

Lemma:  If , 

then  is an interval for any .
⋂

k

Ck ≠ ∅

Cτ τ
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C5
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Otherwise, it is at most a union of  intervals.K



How large is the set?

Theorem:  

Also, 
Here, size = length (regression) or cardinality (classification)

size(CM) ≤ 2
K

∑
k=1

size(Ck)/K .

size(CM) ≤ Kmax
k=1

size(Ck) .

Special case: equal intervals “median of midpoints”

Suppose all intervals have equal size (assume odd  for simplicity).
Sort them by their midpoints.

Report the “median interval” 
(interval corresponding to the median of midpoints).

This has coverage  and is larger than ,
and has the same size as input intervals.

K

1 − α CM



Using prior information

Suppose we have some idea that certain models
are likely to be more accurate (small sets) than others.

We can incorporate this knowledge using a (data-independent)
prior distribution  over the models.w

Define 

as the “weighted majority vote” set.

Theorem:  

CW := {y :
1
K

K

∑
k=1

wk1(y ∈ Ck) > 1/2}
P(Y ∈ CW) ≥ 1 − 2α .



Randomized voting

Let  be the realization of a uniform  random variable,
Independent of all the data.

Define 

u [0,1]

CR := {y :
1
K

K

∑
k=1

wk1(y ∈ Ck) > 1/2 + u/2}

Alternately 

Theorem:  

Proof uses “randomized Markov’s inequality” (R+Manole’23):

CU := {y :
1
K

K

∑
k=1

wk1(y ∈ Ck) > u}
P(Y ∈ CU) ≥ 1 − α .

Theorem:  and  

Proof uses “randomized Markov’s inequality” (R+Manole’23):
 for any nonnegative . 

CR ⊆ CW P(Y ∈ CR) ≥ 1 − 2α .

P(X ≥ Ua) ≤ 𝔼[X]/a X, a
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Eg: conformal prediction with Lasso
 models: Fit lasso to training data, with  penalty .

Combine the 20 conformal prediction sets at level .
The plot below is for a particular random test point . 

K = 20 ℓ1 λ1, …, λ20
α = 0.05

X

Randomized sets used  for visualization.
Coverage: 97% ( ), 92% ( ), 96% ( ) 

>99% of the time, these are intervals.

u = 1/2
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Combining exchangeable sets

Let  denote the majority vote of sets .

Define .

CM(1 : k) C1, …, Ck

CE(1 : K) :=
K

⋂
k=1

CM(1 : k)

Theorem: If the input sets are exchangeable and have coverage 
, then  has coverage . In fact, for an infinite 

sequence of exchangeable sets, .
1 − α CE(1 : K) 1 − 2α

P(∃t ≥ 1 : Y ∉ CE(1 : t)) ≤ 2α

Proof: Use “exchangeable Markov inequality” (Manole+Ramdas’23)
which states that for any sequence  of exchangeable
nonnegative random variables, 

X1, X2, …
P(∃k ≥ 1 : X̄k ≥ 1/α) ≤ 𝔼[X]α .

Note: Arbitrarily dependent sets can always be made 
exchangeable by randomizing their order.



Eg: multi-split conformal prediction

Split-conformal prediction is based on sample splitting.
(Use part of the data to train model, held-out data for conformal prediction)

We suggest: Repeat many times and take exchangeable majority vote.
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Eg: derandomizing Median-of-means (MoM)
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MoM is a method to estimate the mean of a (heavy-tailed) distribution with 
two moments. It splits the data into  buckets, calculates mean within each 

bucket, and then takes the median across buckets.
We suggest: repeat many times, take “median of median of means”.
(Essentially the same theoretical guarantee, much better practically.)

B



What if the sets have different coverages?

If the data are not actually iid or exchangeable, then each
model may achieve a different coverage level. 

Theorem: If set  has coverage , then 

Same guarantee for . 

Ck 1 − αk

P(Y ∈ CR) ≥ 1 −
2
K

K

∑
k=1

wkαk . CM, CW

Corollary: if the input sets have asymptotic coverage, so does 
the majority vote set.
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A. If we use  models to make repeated predictions on iid 
data, how can we get small sets with valid coverage? 
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Improving with experience: case 1 (iid data)
Start with uniform weights over the  models. 

As predictions are made, outcomes are observed, 
update the weights via the “exponential weights” algorithm.

K

Pick loss function  
eg: count (classification) or length (regression). 
Some subtleties: not bounded, but nonnegative.

ℓ(t) = size(C(t))



AdaHedge step-size

So how should we set learning rate  ?η(t)

 

 
where , 

 is the hedge loss, 
 is the “mix loss”

η(t) :=
ln K

δ(1) + … + δ(t−1)

δ(i) := h(i) − m(i)

h(i) := w(i) ⋅ ℓ(i)

m(i) := −
1

η(i)
ln(w(i) ⋅ exp(−η(i)ℓ(i)))

AdaHedge (de Rooij et al. 2014)
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Improving with experience: case 2 (dist. shift)

In the previous algorithm, we implicitly assumed that each expert 
was providing level  sets as requested, so our loss function 

only charged the size of the set.
(1 − α)

But what if there is distribution shift/drift, due to which 
different models may be (unknowingly) over/underconfident?

Can we still combine them to yield small sets, at the desired level?

This is reasonable in iid settings, because conformal prediction  
does yield such a guarantee.

Next, we wrap around an existing algorithm by Gibbs and Candes (’21-23) 
called “adaptive conformal inference” (ACI), and a recent algorithm called 

“quantile tracking” (Angelopoulos et al.’ 23), built to adapt to distribution shifts.



Adaptive conformal inference (ACI) — for one model
For a single model , ACI outputs  prediction sets, where 

 and
,  

where  indicates miscoverage, 
 is a stepsize.  

(Gibbs+Candes’21)

μ (1 − α(t))
α(1) = α

α(t) := α(t−1) + γt(α − ϕ(t−1))
ϕ(t) = 1{Yt ∉ C(t)(α(t))}

γt > 0

A “better” algorithm: quantile tracking
To avoid the issue of possibly negative , switch to quantile space.

 and

(Angelopoulos, Candes, Tibshirani’24)

α(t)

q(1) = q
q(t) := q(t−1) − γt(α − ϕ(t−1))

C(t)(q(t)) := {y : s(t)(μ(x(t)), y) ≤ q(t)}

Both methods satisfy   deterministically

for appropriate stepsize  choices.

1
T

T

∑
t=1

ϕ(t) = α + o(1)

γ



Conformal online model aggregation (COMA)

We propose two ways to combine ACI with our dynamic merging algorithm.
Method 1 (uncoordinated): we have  uncoordinated ACI algorithms 

running, each having a different base prediction method (random forest or 
lasso), and we simply wrap our exponential weighted majority vote on top.

Since each ACI takes care of ensuring that its own algorithm has well 
calibrated error level, our wrapper can take care of focusing on length.  

We will get asymptotic coverage .

K

1 − 2α

Method 2 (coordinated): we have  different ACI algorithms running,
but the feedback provided to them is not about their own miscoverage, but 

the miscoverage of the combined majority vote set.

Now, our overall algorithm will be level  asymptotically.

K

1 − α
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Predict Amazon daily opening stock price (2006-14)

Combining 6 models: AR(1) to AR(6)
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Summary of talk

• Proposed randomized, weighted variants of majority vote 
that can efficiently combine dependent uncertainty sets

• Demonstrated applications to derandomization of statistical 
procedures (like split conformal prediction) 

• Showed how to extend these to online settings, in 
particular performing “conformal online model aggregation” 

• The paper also has an extension “beyond coverage” to 
bounded loss functions (“conformal risk control”)

arXiv:2401.09379 and arXiv:2403.15527
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