
Offre de stage - Internship Offer
Learning with heavy-tailed inputs: Out-of-domain Generalization on

Extremes.

4-6-Month Internship leading to a PhD thesis - Spring 2025

Academic context This research internship takes place in the context of the ANR EXSTA project
(EXtremes, STatistical learning and Applications (2024–2029) led by Anne Sabourin. The proposed internship
is intended to lead to a doctoral thesis funded by the project. The potential PhD candidate will benefit from
scientific interactions with other researchers in the field e.g. through workshops organised within the project’s
framework, in addition to usual participation in conferences.

Scientific Context Extreme Value Theory (EVT) is a field of probability and statistics concerned with
tails of distributions, that is, regions of the sample space located far away from the bulk, associated with
rare and extreme events. Let X be a random element (variable, vector, or function) of interest. One major
goal of EVT is to provide probabilistic descriptions and statistical inference methods for the conditional
distribution of X given large }X}, i.e. }X} ą t, where } ¨ } is a semi-norm and t is a large threshold (see
e.g. the monographs De Haan and Ferreira (2006); Resnick (2008)). In applications, relevant thresholds t for
probabilistic predictions may be as high as the largest observation among n realizations of X. Probabilistic
extrapolation is then needed to use the information brought by a subsample of size kn ! n composed of
the observations with the largest semi-norms. This requires sound theoretical assumptions pertaining to
the theory of regular variation and maximum domains of attraction, ensuring that a limit distribution µ “

lim Lawpt´1X | }X} ą tq exists as t Ñ 8, up to suitable standardization. This stylized setting encompasses
a wide range of applications in various disciplines where extremes have tremendous impact, such as climate
science, insurance, environmental risks and industrial monitoring systems Beirlant et al. (2004).

In a supervised learning framework, training observations consist of pairs pXi, Yiq and the goal is to
learn a good prediction function fpXq to predict a new, unobserved Y . Machine learning and AI algorithms
typically aim at minimizing an expected error Rpfq “ ErℓpfpXq, Y qs, for some loss function ℓ. In many
contexts (covariate-shifts, climate change), extrapolation (or out-of-sample) properties of the predictors thus
constructed are crucial, and obtaining good generalization properties on unobserved regions of the covariate
space is key. Recently, there has been significant interest in the challenge of establishing guarantees for
out-of-domain generalization (see e.g. Wang et al. (2022); Zhou et al. (2022) for a review of the ML literature
on this topic) under specific assumptions.

Recent works focus on the problem of learning a predictor f̂k based on a fraction kn{n of the most
extreme observations with guarantees regarding the risk on extreme regions Rtpfq “ ErℓpfpX, Y q|}X} ą ts,
as t Ñ 8. Existing works cover the problem of binary classification (Jalalzai et al. (2018, 2020); Clémençon
et al. (2023)) and least squares regression (Huet et al. (2023)). In both contexts, generalization guarantees
for the asymptotic risk as t Ñ 8 have been obtained under natural regular variation assumptions on the pair
pX, Y q (mainly, that µXY “ limtÑ8 Lawpt´1X, Y | }X} ą tq exists, while Y is bounded). A key common
idea behind these works is to restrict the search of a good predictor to angular predictors of the kind
fpxq “ fp}x}´1xq, x ‰ 0, which is shown to be legitimate under the aforementioned assumptions.

For simplicity, the theoretical study in both works is limited to Empirical Risk Minimization (ERM)
algorithms without a penalty term. In addition, the regression problem analysed in Huet et al. (2023) covers
least squares regression only. Also, the assumption that Y is bounded is made for simplicity only. With
heavy-tailed targets, a natural situation in the context of extreme value analysis, non-linear transformations
of the target are required in order to satisfy the boundedness assumptions.

Research Objectives The general purpose of this internship is to extend the scope of applications of the
supervised learning methods described above to a wider class of learning algorithms. One main limitation
of least squares regression is that the optimal predictor (i.e. the conditional expectation ErY |Xs) is not
invariant under non-linear transformations of Y , indeed, in general, for such a transformation φ, φpErY |Xsq ‰

E|φpY q|Xs. As a starting point, the least-squares framework of Huet et al. (2023) will be extended to the
quantile regression framework which, in contrast to the least squares setting, is compatible with non-linear

1



transformations. Indeed the median, say, of the transformed variable φpY q is the same as the output of any
monotone transformation φ applied to the median of Y . The first step will be to study the convergence of
conditional quantiles of Y given X, as }X} Ñ 8.

From a statistical learning perspective, we shall extend the ERM framework considered thus far to
encompass penalized risk minimizations procedures amenable to high dimensional covariates or non-linear
regression functions. SVM quantile regression (Takeuchi et al. (2006)) is a natural candidate for this purpose.
The goal will be to obtain finite sample guarantees on the generalization error of quantile regression functions
learnt with the kn largest observations (w.r.t. the norm of X), and hopefully recover learning rates of
comparable order as the ones obtained in the classical framework, with the full sample size n replaced with
the reduced sample size kn. The bottleneck is that these kn largest observations may not be considered
as an independent sample because they are order statistics of a full sample. However it is anticipated that
proof techniques from recent works (Goix et al. (2015); Lhaut et al. (2022); Huet et al. (2023); Aghbalou
et al. (2024)) based on conditioning arguments and concentration inequalities incorporating (small) variance
terms can be leveraged for this purpose. Our first objective will be to obtain minimal guarantees (slow rates)
associated with a control of Rademacher complexities, following Takeuchi et al. (2006). For an introduction
to SVM’s and proof techniques using Rademacher complexities of kernel classes, see Mohri et al. (2018)
(Chapters 4,5,10).

On the longer term, the internship will serve as a preparation for the PhD thesis. Envisioned research
projects include obtaining fast rates within the same SVM framework (Steinwart and Christmann (2011)),
using sparsity inducing penalties (Zhang et al. (2016)), or exploring other learning approaches such as
aggregation methods (e.g. random forests) or local predictors (k-NN) in similar supervised learning frameworks
as described for this internship.

Supervisory team and contact The thesis will be hosted in the MAP5 laboratory, at Université Paris-
Cité.

• Supervision (Internship + PhD thesis): Anne Sabourin (MAP5, Université Paris Cité, France),
anne.sabourin@math.cnrs.fr, https://helios2.mi.parisdescartes.fr/~asabouri/index.html#
generalInfo

• Co-supervision (PhD thesis): Clément Dombry (LMB, Université de Fanche-Comté, France),
clement.dombry@univ-fcomte.fr, https://cdombry.perso.math.cnrs.fr/

• Envisioned collaboration with: Johan Segers (Department of Mathematics, KU Leuven,
jjjsegers@kuleuven.be, https://perso.uclouvain.be/johan.segers/

The intern/PhD candidate will be offered travel opportunities in order to work with all three parties.
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