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The statistical analysis of serological and social contact data to inform infectious disease modelling

Background

o SIMID-initiative (since 2008):
o CenStat, I-BioStat, Data Science Institute, UHasselt
o CHERMID, Vaxinfectio, UAntwerp
e Unifying statistical and mathematical models:
Sir Ronald Ross (1857-1932)
@ Research Topics:
o maternal immunity
e vaccine-induced immunity
o serological data analysis
o social contact patterns
e epidemic modelling
o demographic modelling

o cost effectiveness analysis
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L Introduction

Serological data

Serological data

@ cross-sectional set of residual blood samples (hospital laboratories,
blood donors, . ..)

o tested for infection-specific IlgG antibodies using ELISA

@ antibody level > cut-off value — seropositive
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age age

Example: parvovirus B19 in Belgium
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L Introduction

Serological data

Setting the scene: varicella zoster virus

varicella zoster virus (VZV)

'IE o

clinical primary infection — varicella
presentation reactivation — herpes zoster
transmission direct or aerosol
infectious period about 7 days
vaccination no active immunisation

in most of Europe

serological BE (2002)
surveys
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L Introduction

Estimation framework

Estimation framework

@ compartmental models to describe infectious disease dynamics

@ simple example:

MSIR model
MA-protected susceptible infected recovered
(months) (years) (days) (lifelong)
v

Y

®@——O0 00—
v v g I

@ dynamical system over age a and time ¢
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L Introduction

Estimation framework

Estimation framework

@ MSIR model and variants can be used to analyze serological surveys
o estimate:
@ age-specific force of infection
@ basic reproduction number R

@ critical immunization level

e plan and monitor vaccination programmes or intervention strategies

@ often requires estimation of age-dependent transmission rates

— essential to determine the pattern of person-to-person spread of an
infection in a large population

@ requires making assumptions
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L Introduction

Estimation framework

The MSIR model

o Compartments and time scales.

e Each differential equation represent the change (over time and age)
in the compartment.

OM(a, oM (a,
Zw@(a g + M('?(t 2 = —a(a)M(a,t),

98(at) | 5at) — oy(a)M(a,t) — (Aa, t) + p(a))S(a, ),

a

ota) 4 O1at) — \(a,)S(a,t) — (v + p(a))(a,t),

25e + 2t = vl(a,1) — () R(a,t),

where N(a,t) = M(a,t) + S(a,t) + I(a,t) + R(a,t) and
M(0,T) = B(t), the number of births all susceptible to infection.
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L Introduction

Estimation framework

The Lexis diagram
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L Introduction

Estimation framework

MSIR model

MSIR model: assuming endemic equilibrium

D = —{a(a) + p(a)} M (a),

B = a(a)M(a) - {Ma) + n(a)}S(a),
U = Ma)S(a) — {7(a) + p(a)} (a),
Y = (a)I(a) - p(a)R(a)

o u(a) = mortality rate
o a(a) = rate of losing maternal antibodies

@ A(a) = rate at which a susceptible of age a acquires infection
— force of infection (FOI)

o ~(a) = recovery rate
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L Introduction

Estimation framework

Mass action principle

MAP

Ma) = D /0 ~ Bla, a')\(a)S (') dd!

@ ((a,a’) = transmission rate, i.e. per capita rate at which an
individual of age a’ makes an effective contact with a person of age
a, per year

@ D = mean duration of infectiousness
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L Introduction

Estimation framework

Estimation from serological data

@ solve MSIR ODEs and derive expressions for

e fraction of susceptibles s(a) — solve MAP:

Aa) = D/Ooo B(a,a)A(a")S(a’)da'

o fraction of seropositives r(a) — evaluate loglikelihood:

174

Z Wi {yi loglr(a:)] + (1 — i) log[1 — r(a:)]}

o 1, if seropositive
vi = 0, if seronegative
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L Introduction

Estimation framework

Estimation from serological data

@ assume type | maternal antibodies — age A
@ MSIR - fraction of susceptibles:
a
s(a) = exp (—/ A(u)du) ~1-—r(a)
A
@ move to discrete age framework — solve MAP iteratively

B(a,a') = ﬁij ifa € [a[i],a[iJrl]) and a’ € [a[j],a[jﬂ])

Bi; ‘Who-Acquires-Infection-From-Whom' (WAIFW) matrix
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L Introduction

Estimation framework

Estimation from serological data

@ estimate parameters determining 3;; from serological data using
ML-estimation

@ estimate Ry = dominant eigenvalue of the next generation matrix
with elements:

Ali+1]
D / N(a)da | Bi;
a

7]
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—Introduction
LThe traditional ‘WAIFW' approach

Traditional approach
@ Anderson and May (1992): mixing patterns

e impose mixing pattern on 3
e constrain # distinct elements

o based on prior knowledge of social mixing behaviour

age age age age
class1 class 2 «class 3 class 4

{ 4 } .

ageclass 1 — (3, Ba B4 B4
age class 2 — Ba B2 B4 Ba
age class 3 — Ba B4 B3 Ba

ageclass 4 — 34 B Ba B
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—Introduction
LThe traditional ‘WAIFW' approach

WAIFW approach applied to VZV

previously used WAIFW structures for VZV: 6 age-categories:

B1 Be Be Be Be Be B1 B1 Bz Ba Bs Bs
Be B2 Be Be Be Be B1 B2 Bz Ba By Bs
wy=| P6 B Bz Be Be Be |y, | A3 B3 Bz Sa b5 Do
Be PBe Be PLa BPe Be Ba Ba Ba Pa Bs Be
Be Be Be Be Bs Be Bs Bs Bs Bs Bs Be
Be Be Be Be Be Be Be Be Be Be Be Be
B1  B1 B B1 B1 P B1 Be Bs Be Ps Be
By B2 B2 Bz B2 B2 Be B2 Pe Pe Be Pe
wy=| £ B3 B3 Bz B3 B3 |y, _| B Be B3 Bs Be  Bo
Ba Ba  Ba Ba Ba  PBa Be Be Pe Pa Be Pe
Bs Bs Bs Bs Bs Bs Be Be Bs Bs Bs Be
Be Be Bs Bs Be BPe Be Bs Bs Be Be Bs
issues:

@ direct estimation or model based - regular matrices
@ selection of best WAIFW-matrix using AlC
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L Introduction

LThe traditional ‘WAIFW' approach

WAIFW approach applied to VZV

with (Belgian situation)
e N=9943749,L = 80,D = 7/365
@ age categories [0.5,2), [2,6), [6,12), [12,19), [19,31), [31,80)

using direct estimation based on binomial likelihood

Model Ry AIC
Wi 8.831 1375.7
Wa 3.5612 13728
Ws 4213 1372.8
Wy 8.807 1375.7




The statistical analysis of serological and social contact data to inform infectious disease modelling

L Introduction

LThe traditional ‘WAIFW' approach

WAIFW approach applied to VZV

e Farrington and Whitaker (2005): continuous surface
Bla,a’) = k(y(u) x b(v]u) +9),

where

ru
v(u; 1, v) ¢ Mu’ " exp (— ) ,
V2
. _ (utv) N u—v)f!
b(vlu;a, ) = ;s
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L Introduction

LThe traditional ‘WAIFW' approach

A Continuous WAIFW Applied to VZV
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L Introduction

LThe traditional ‘WAIFW' approach

Traditional approach

@ Anderson and May (1992): mixing patterns
— disadvantages:

o low dimensional matrices
e non-realistic discontinuities

o choice age classes: ad hoc

e Farrington & Whitaker (2005): continuous contact surface
@ both methods rely on strong parametric assumptions

e Wallinga et al. (2006): use data on social contacts to inform
estimation of age-dependent transmission rates
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L Estimating inf. disease parameters using serological and social contact data

Outline

e Estimating inf. disease parameters using serological and social contact data
@ The social contact hypothesis
@ Dimensions of uncertainty
@ Application to VZV
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L Estimating inf. disease parameters using serological and social contact data

Social contact approach

for infections transmitted primarily through non-sexual social contacts:
rates of conversational/physical contact
) relation?

transmission rates ($(a,a’) < WAIFW-matrix
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L Estimating inf. disease parameters using serological and social contact data

LThe social contact hypothesis

Social contact hypothesis

Social contact hypothesis (Wallinga et al., 2006)

Bla,a)

N

q - cfa,a’)
| |

proportionality constant contact rate

/ estimation \

serological survey social contact survey
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L Estimating inf. disease parameters using serological and social contact data

The social contact hypothesis

Social contact survey

Alternative approach:

Using data on social contacts to estimate age-specific transmission
parameters for respiratory-spread infectious agents.

& 8

Objectives

@ Disentangle contact behaviour
from transmission process

Edmunds et al. (1997)
Beutels et al. (2006)
Mossong et al. (2008)
@ Get new insights in the Hens et al. (2009)
transmission process McCaw et al. (2010)
Horby et al. (2011)

@ Get insights in predictiveness of
social contact data
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L Estimating inf. disease parameters using serological and social contact data

LThe social contact hypothesis

EU mixing patterns

. 3 o o -
’ { @ common structure
g i 2R
Ageof Paricipant Ageof Paticipant Ageot Paicipant @ note the
i " " converging
) ) ) ) off-diagonals:
§ parents get older

0 20 4 e

Age of Participant Age of Participant Age of Participant Age of Participant
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L Estimating inf. disease parameters using serological and social contact data

Dimensions of uncertainty

Dimensions of uncertainty

Social contact hypothesis (Wallinga et al., 2006)

model selection uncertainty:

@ c(a,a’) — what type of contact?

@ ¢ = constant — assumption too strong?
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L Estimating inf. disease parameters using serological and social contact data

LAppIication to VZV

Applied to VZV in Belgium

@ modeling assumptions:

e MSIR compartmental model (lifelong immunity)
e endemic equilibrium

o type | maternal antibodies and type | mortality

@ ML-estimation: ¢ — Eo
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L Estimating inf. disease parameters using serological and social contact data

LAppIication to VZV

Type of contact?

@ select types of contact with high transmission potential for VZV

@ which one induces the best fit to the observed serological profile?

model parameter  type of contact
Cq q1 all contacts
Co q2 close contacts
C3 qs3 close contacts > 15 minutes
Cy qa close contacts and non-close contacts > 1 hour
Chs qs close contacts > 15 minutes and non-close contacts > 1 hour
model G 95% ClI Ry 95% Cl AIC

C 0.132 0.103,0.175 15.69 [12.34,21.41] 1386.618
Cs 0.160 0.126,0.208 10.24 [8.21,13.68] 1379.581
Cs 0.173 0.133,0.221 8.68 [6.89,11.34] 1374.958
Cy 0.145 0.113,0.188 11.73 [9.41,15.95] 1380.354
Cs 0.156 0.119,0.204 10.40 [8.05,14.10] 1376.068
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l*Est\'mating inf. disease parameters using serological and social contact data
LAppIication to VZV

g = constant?

@ ¢ might depend on age-specific characteristics related to
susceptibility and infectiousness

@ contacts reported in diaries are just proxies of at-risk events by
which infection can be transmitted

age-dependent proportionality

q(aaa/) : C(aaa/)
| |

proportionality factor contact rate

various options: back to issues with identifiability — model averaging
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L Estimating inf. disease parameters using serological and social contact data

LAppIication to VZV

Multi-model inference
Goeyvaerts et al. (2010):

5.64
421 479 537 6.07 8.26 8.68 14.08 15.69
1 y
T 7

Wi | Mi M| MA M Cs SA o
MA, MA MAg
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l*Est\'mating inf. disease parameters using serological and social contact data
LAppIication to VZV

Summary

@ Dimensions of uncertainty:

o type of contact underlying transmission of disease

o parametric model relating the contact rates to the transmission rates
(e.g. constant/age-dependent proportionality)

@ model selection uncertainty: different models may induce similar fit,
while entailing different estimates of Ry

@ to overcome this problem: multi-model inference
— model averaged estimate for Ry

@ VZV in Belgium: improvement of fit by modeling transmission as
the product of two age-specific variables: the age-specific contact
rate and an age-specific proportionality factor
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l7/-\n excursion to questions that can be answered by using these data

Outline

9 An excursion to questions that can be answered by using these data
@ Examples of use and analysis of social contact data
@ Examples of use and analysis of serological data
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

A historical perspective

@ Social contacts as proxies of transmission events of airborne
infections

@ Rapoport and Horvath (1961): first social surveys to construct
networks for studying the spread of infection

@ Several studies have been conducted since: Edmunds et al. (1997);
Wallinga et al. (2006); Mossong et al. (2008); Salathé et al. (2010);
Read et al. (2012); Danon et al. (2013); Kucharski et al. (2014);
Kwok et al. (2014); Eames et al. (2015); Dodd et al. (2016), ...

e Wallinga et al. (2006): conversational contacts predictive for
age-specific proportion of persons immune against mumps in Utrecht
in 1986 and against pandemic influenza in Cleveland in 1957.

social contact hypothesis: ¢(a,a’) = ¢
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Systematic review

Hoang et al. (2019):

REVIEW ARTICLE

OPEN

A Systematic Review of Social Contact Surveys to Inform
Transmission Models of Close-contact Infections

Thang Hoang®, Pietro Coletti®, Alessia Melegaro®, Jacco Wallinga**, Carlos G. Grijalva®
John W, Edmunds', Philippe Beutelst, and Niel Hens¢

@ diary-based approach & face-to-face interviews

@ data sharing initiative: www.socialcontactdata.org &
socialmixr-package (R software)
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Estimating contact rates

@ General guidelines

e Hens and Wallinga (Wiley, StatsRef 2019)

o Wallinga, van de Kassteele and Hens (HIDDA, 2019)
@ Smoothing approaches

o van de Kassteele et al. (2017): smoothing INLA

o Camarda and Hens (2013), Vandendijck et al. (2018): clever choice
of axes to smooth over
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Behavioural change: regular holiday periods

Luca et al. (2018):

De Luca etal. BMCnfectious Diseases (2018) 18:29
DOI 10.1186/512879-017-2934-3 BMC Infectious Diseases

The impact of regular school closureon &
seasonal influenza epidemics: a data-driven
spatial transmission model for Belgium

Giancarlo De Luca', Kim Van Kerckhove?, Pietro Coletti?, Chiara Poletto', Nathalie Bossuyt?, Niel Hens?*
and Vittoria Colizza'®"

@ Holiday periods have a significant impact on transmission

@ Organising holiday periods could mitigate the transmission of
infectious diseases
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Behavioural change: illness

Santermans et al. (2017):

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Structural differences in mixing behavior informing the role of ®umm
asymptomatic infection and testing symptom heritability

Eva Santermans®’, Kim Van Kerckhove? Amin Azmon®, W. John Edmunds©,
Philippe Beutels?, Christel Faes?, Niel Hens*"

* Interuniversity Institute for Biostaisics and statistical Boinformarics, Hasselt Universiy, Belgium
* Novartis Pharma AC, Oncology Business Unit/General Medical Afairs, Novartis Campus, Basel, Switzerland

Centre for the Mathematical Modellng of Ifectious Diseases, Department of Infctious Disease Epidemiology, London School of Hygiene and Tropical
Medicine, London, United Kingdom

¢ Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp. Belgium

@ lllness has an impact on activity (contacts & mobility)

o Different disease dynamics
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Inferring networks from social contact data

Goeyvaerts et al. (2018):

Nele Goeyvaerts#, Eva Santermans'#, Gail Potter?, Andrea Tomeri’,
Kim Van Kerckhove', Lander Willem?, Marc Aerts', Philippe Beutels®
Gte this artidle: Goeyvaerts N, Santermans £, and Niel Hens'?

Potter , Tomeri A, Van Kerckhove K, Willem L,
Rerts M, Beutels P, Hens N. 2018 Household

Research C

Itenuniversity Institute for Biostatistcs and Statistcl Bionformatics, Unasselt, Hasselt, Belgium
*The Emmes Corporation, Rockvlle, MD, USA

members do not contact each other at random: entre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease
implcatons for infectious disease modelling Institute, Universy of Antwerp, Antwerp, Belgium
Proc. R Soc. B 285 20182201 5, 0000-0002-8537-2625

http://dx.doi.org/10.1098/rspb.2018.2201

@ Household members do not mix at random

@ Combining household and egocentric data proves to be useful
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l7/-\n excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Outline

9 An excursion to questions that can be answered by using these data
@ Examples of use and analysis of social contact data
@ Examples of use and analysis of serological data
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of serological data

Mixture modelling avoiding the use of thresholds

Bollaerts et al. (2012)

Statistical Modelling 2012; 12(5): 441-462

Estimating the population prevalence and force
of infection directly from antibody titres

K Bollaerts', M Aerts?, Z Shkedy?, C Faes?, Y Van der Stede?, P Beutels®
and N Hens??

1Scientific Institute of Public Health, Brussels, Belgium

2|nteruniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University &
Katholieke Universiteit Leuven, Diepenbeek, Belgium

3Centre for Health Economics Research and Modeling Infectious Diseases, Centre for the
Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp,
Antwerp, Belgium

“Veterinary and Agrochemical Research Centre, Brussels, Belgium

e Outperforms using sensitivity and specificity

@ The force of infection underestimated using dichotomous data
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of serological data

Back calculation
Borremans et al. (2016)

©'PLOS | sz

Estimating Time of Infection Using Prior
Serological and Individual Information Can
Greatly Improve Incidence Estimation of
Human and Wildlife Infections

Benny Borremans' *, Niel Hens?*, Philippe Beutels?, Herwig Leirs', Jonas Reilniers'*
1 Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium, 2 Centre for Health Economics
Vaccine & Infecti
(VAXINFECTIO), Universit of Antwerp, Antwerp, Belgium, 3 Interuniversiy Institue for Biostatistcs and
(BIOSTAT), Diepenbeek, Bolgium, 4 Department of
CrossMark Engineering Management, University of Antwerp, Antwerp, Belgium

@ Back calculation requires knowing the response after
vaccination /infection

@ When known can improve incidence estimation
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of serological data

Inferring immunological processes from serological data

Goeyvaerts et al. (2011)

Biostatistics (2011), 12,2, pp. 283-302

doi:10.1093/biostatistics kxq059 -
Advance Access publication on September 14,2010

Model structure analysis to estimate basic immunological
processes and maternal risk for parvovirus B19

NELE GOEYVAERTS*
Interuniversity Institute for

s an ice

ioi ics, Hasselt University,
Agoralaan 1 Gebouw D, B3590 Diepenbeck, Belgium

nele goeyvaerts@uhasselt.be

@ Model structure forensics

@ Discerning between models will not always be possible - model
averaging
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of serological data

Testing the social contact hypothesis

Santermans et al. (2015)

Contents lists available at ScienceDirect

Epidemics
journal homepage: www.elsevier.com/locate/epidemics
The social contact hypothesis under the assumption of endemic ®CMM“‘(

equilibrium: Elucidating the transmission potential of VZV in Europe

E.Santermans®*, N. Goeyvaerts", A. Melegaro, W.J. Edmunds*, C. Faes?, M. Aerts?,
P. Beutels ", N. Hens "

@ Relying on the effective reproduction number as a sanity check

o Acknowledging data selection uncertainty
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L An excursion to questions that can be answered by using these data

Examples of use and analysis of serological data

Estimating MMR vaccine coverage

Wood et al. (2015)

ORIGINAL ARTICLE

Estimating Vaccine Coverage from Serial Trivariate
Serologic Data in the Presence of Waning Immunity

James G. Wood,* Nele Goeyvaerts,"* C. Raina MacIntyre,* Robert I. Menzies,**
Peter B. McIntyre,* and Niel Hens"¢

@ Exploiting the multivariate nature of MMR seroepidemiology and
trivalent vaccine

@ Important to acknowledge time-varying vaccine-induced antibody
levels
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L Using frailty models for the analysis of multivariate serological data

Outline

e Using frailty models for the analysis of multivariate serological data
Setting the scene

The mass action principle

Bivariate correlated frailty models

Infection processes

Data

Discussion & conclusion
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L Using frailty models for the analysis of multivariate serological data

Setting the scene

Introduction

@ Airborne infections (influenza, measles, varicella, . ..)

@ Transmission parameters estimated from serological data, e.g. force
of infection A(a), basic reproduction number Ry, ...

@ Force of infection relates to transmission rates through the so-called
“mass action principle”; infectious and susceptible individuals are
assumed to mix completely in the population

e Estimation of (age-dependent) transmission rates: social mixing
patterns

Goal

Incorporating individual heterogeneity in acquisition of infections in the
mass action principle
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L Using frailty models for the analysis of multivariate serological data

The mass action principle

Introduction: the mass action principle

Homogeneous mixing

O X X
Force of infection:
A = pBI*
@ (3. transmission rate

@ I*: number of infected
individuals

o Ry = BND is the basic
reproduction number
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L Using frailty models for the analysis of multivariate serological data

The mass action principle

Introduction: mass action principle

Homogeneous mixing

Observed heterogeneity

o Age-heterogeneity

@ Other sources of
heterogeneity
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L Using frailty models for the analysis of multivariate serological data

The mass action principle

Mass action principle - Heterogeneous mixing

o Age-dependent force of infection A(a) obtained by
(Anderson and May, 1991):

Aa)=ND /UOO B(a,a"Y\(a")S(a")p(a’)da’

where
o B(a,a’): effective contact function
o S(a’): proportion of susceptible individuals of age a’
o ¢(a’): is the age-specific population density

Note that NDA(a’)S(a")p(a’) ~ I*(a').

@ Other types of observed heterogeneity, e.g. gender: focus on age
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L Using frailty models for the analysis of multivariate serological data

The mass action principle

Mass action principle - Individual heterogeneity

o Individuals differ in
e propensity to make contacts with others
o susceptibility to infection
o infectiousness after infection
@ Sources of heterogeneity are typically unobserved or latent
see e.g. Coutinho et al. (1999) & Farrington et al. (2001)
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Mass action principle

Homogeneous mixing

Unobserved

Observed heterogeneity heterogeneity

o Age-heterogeneity and/or o Activity levels
o Other sources of

: o Susceptibility
heterogeneity

@ Infectiousness
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The mass action principle

Mass action principle - Heterogeneity in Activity Levels

o Conditional force of infection A(a, Z) obtained by

Na,Z)=ND /000 /000 Bla, Z;d', ZY\d', Z")S(d'| Z")p(a") f(Z")dZ' da

where
e Z and Z’: individual frailty terms distributed according to f()
o B(a,Z;a’,Z'): augmented effective contact function
o B(a,Z;a',Z") = ZBo(a,a’)Z": proportionality assumption
e D: average infectious period
e N: population size
@ Shared frailty interpretation for infections sharing transmission routes

@ Basic reproduction number Rjy:
{1+ Var(Z)} x dom. eigenval. of 5} (a,a’) = ND¢(a)Bo(a,a’)
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o Other sources of
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The mass action principle

Heterogeneity in Susceptibility and Infectiousness

@ Heterogeneity in susceptibility (Z1) and infectiousness (Z2):
physiological characteristics of infection process

@ Hazard of infection A(a, Z1, Z2) = Z1X\o(a) implies frailty model
w.r.t. heterogeneity in susceptibility only

@ Basic reproduction number Ry:
{1+ Cov(Z1,Z3)} x dominant eigenvalue of 8% (a,a’)
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Combined model

Sources of heterogeneity combined in one frailty model

Augmented effective contact function

|Bla, 2, 21, Zo;d, 2, 21, Z3) = Z 21 fo(a,a) 2 2

@ Force of infection: (multiplicative) frailty model w.r.t. heterogeneity
in activity levels & susceptibility

)\(CL, Z, Z17 ZQ) = ZZle(a)

In general, basic reproduction number Ry equals {1 + Var(Z)} x
{1+ Cov(Z1, Z3)} x dominant eigenvalue of 8§ (a,a’)

o Extension to age-dependent frailties (activity levels)
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Bivariate correlated frailty models

Frailty models for bivariate data

Age-dependent
individual
heterogeneity

Age-invariant
individual
heterogeneity

Activity Shared
7
. :
Susceptibility (& Correlated Zi(a)
Infectiousness) frailty !
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Data

Data application: PVB19 and VZV serology

@ Bivariate serological survey data on parvovirus B19 (PVB19) and
varicella-zoster virus (VZV) from Belgium anno 2002

e PVB19 causes range of diseases, e.g. fifth disease (transmission by
infected respiratory droplets)

@ Primary infection with VZV results in chickenpox, maybe reactived
resulting in herpes zoster (through direct close contact with lesions
or aerosol contact by saliva and sneezing)

e n = 3379 serological profiles for the infections under study
@ Bivariate current status data with a representing the age at

sampling time of an individual j (infections ¢ = 1,2), and

V., — 0, if seronegative,
. 1, if seropositive.

o Type | interval censored (current status) data
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Data application: PVB19 and VZV

@ Assumptions:

o Social contact hypothesis: By(a,a’) = g(a,a’|c)c(a,a’)

o Constant (infection-specific) proportionality factor: g;(a,a’|c) = ¢
o Gamma frailty distributions with unit mean & frailty variances ~.;
o Direct likelihood approach

@ Infection processes:

e PVB19: immunizing process (1) or recurrent infection process (2)

o VZV: immunizing infection process
o Models:
o Age-invariant shared frailty models

o Age-dependent shared frailty models: 1C and 2C: v, h = 1,2
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Data

Bivariate age-invariant shared frailty models

Model Ro AIC BIC
SGF-1 q1 0.072  [0.069, 0.075] 3.60 [3.35, 3.88] 4937.14 495551
q2 0.200  [0.188, 0.214] 11.64  [10.59, 12.82]
v 0.152  [0.118, 0.188]
P12 1.000 -
SGF-2 q1 0.071  [0.068, 0.074] 3.18 [2.97, 3.43] 4869.83  4894.33
o 0.011  [0.008, 0.015]
q2 0.173  [0.163, 0.183] 8.98 [8.22, 9.83]
¥ 0.032  [0.002, 0.065]
P12 1.000 -
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Data

Bivariate age-dependent shared frailty models

Model Ro AlC BIC

ADSGF-1-1C ¢ 0.072  [0.069, 0.076]  3.60 [3.22,3.99]  4939.14  4963.64
g2 0200 [0.183,0.221] 11.64  [0.99,13.49]
1 0152  [0.100, 0.210
$.1  0.000 [0.000, 0.009
ADSGF-1-2C  ¢;  0.066 [0.062, 0.071]  3.74 [3.15,4.87]  4912.08  4942.70
g2 0235 [0.191,0.209] 1565 [11.38, 24.08]
v1 2918  [1.524, 5.004
.2 0233 [0.156, 0.323
.1 0316  [0.246, 0.425
ADSGF-2-1C  ¢;  0.065 [0.061, 0.070]  2.90 [2.64, 3.49]  4862.93  4893.56
o 0.012  [0.009, 0.016
g2 0.158 [0.141,0.179] 819  [7.15, 10.46]
y1 1470  [0.415, 3.498
.1 0330  [0.209, 0.530
ADSGF-2-2C  ¢;  0.066 [0.063, 0.071]  3.30 [2.79, 4.45]  4859.26  4896.01
o 0.011  [0.007, 0.015
g2 0.103 [0.156,0.257] 11.27  [8.11, 18.90]
y1 2419 [0.839, 4.960
y.2  0.095  [0.017, 0.186
$.1 0303 [0.226, 0.423]
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Discussion & conclusion

@ Sources of heterogeneity:
o Untestable assumptions regarding heterogeneity in infectiousness
o Shared versus correlated frailty models: sensitivity analysis
@ Age-dependent frailty models:
o Age-dependent frailty models improve model fits
o Specific parametric decay function
@ Combined model for overdispersion and individual heterogeneity:
— communicating vessels

@ Book work in progress: Abrams, S., Wienke, A., Unkel, S., Hens, N.
Frailty Models for Infectious Disease Epidemiology @Wiley
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