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In event driven trials, statistical analyses are planned at a pre specified number of events ( )X

Context

Main objective: predict the date of the  event with an acceptable prediction intervalXth

3 identified methods:
• Emilia Bagiella and Daniel F Heitjan. Predicting analysis times in randomized clinical trials. 

Statistics in medicine, 20(14):2055-2063, 2001 
• Gui-shuang Ying and Daniel F Heitjan. Weibull prediction of event times in clinical trials. 

Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry, 7(2):
107-120, 2008 

• Bayesian approach proposed by Servier
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Population at the cut-off

Patient who have experienced the event

Drop-out / Lost to follow-up patient

Patient still in follow-up

Patient waiting for recruitment
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Model 1: 
Time-to-enrollment
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Model 1: 
Time-to-enrollment

Model 2: 
Time-to-event

Model 3: 
Time-to-censorship

Population at the cut-off

Patient who have experienced the event

Drop-out / Lost to follow-up patient

Patient still in follow-up

Patient waiting for recruitment
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Model 1: 
Time-to-enrollment

Model 2: 
Time-to-event

Model 3: 
Time-to-censorship

Population at the cut-off

X 1,000
Patient who have experienced the event

Drop-out / Lost to follow-up patient

Patient still in follow-up

Patient waiting for recruitment
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4Modelisation

MDL 1

MDL 3

MDL 2

Time-to-enrollment

Time-to-event

Time-to-censorship



Capitalist Slides

5Modelisation
Time-to-enrollment

Notations: 
: inter-arrival times = time elapsed between the recruitment of two consecutive patients

: time of the cut-off (enrollment period observed)
: number of patients enrolled by the time of the cut-off

iat
tc
N (tc)

Statistical model: iat |μ ∼ Exp (μ)

Prior: μ ∼ Γ (aμ, bμ)
Posterior: μ | iat ∼ Γ (N (tc) + aμ, tc + bμ)

Time-to-enrollment ∼ HPP (μ)
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Time-to-event & Time-to-censorship

Notations: 
: time-to-event (resp. time-to-censorship) in treatment arm Xj j

Calculation of the 
posterior distribution

Bagiella & Heitjan

Likelihood

Method

Prior distribution

Analytical

λj ∼ Γ (Aj, Bj)

Xj |λj ∼ Exp (λj)
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Time-to-event & Time-to-censorship

Notations: 
: time-to-event (resp. time-to-censorship) in treatment arm Xj j

ρj ∼ Γ (aρj
, bρj)

λj ∼ Γ (aλj
, bλj)

Calculation of the 
posterior distribution

Bagiella & Heitjan

Likelihood

Method

Prior distribution

Analytical MCMC

Ying & Heitjan

λj ∼ Γ (Aj, Bj)

Xj |λj ∼ Exp (λj) Xj |ρj, λj ∼ Weibull (ρj, λj)
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Time-to-event & Time-to-censorship

Notations: 
: time-to-event (resp. time-to-censorship) in treatment arm  
:  covariate
: parameter associated to the  covariate

Xj j
Xi ith

βi ith

ρ ∼ Γ (aρ, bρ)
λ0 ∼ Γ (aλ, bλ)

ρj ∼ Γ (aρj
, bρj)

λj ∼ Γ (aλj
, bλj)

λ = λ0e ∑ βiXi

Calculation of the 
posterior distribution

Bagiella & Heitjan

Likelihood

Method

Prior distribution

Analytical MCMC MCMC

Ying & Heitjan Servier

X |ρ, λ ∼ Weibull (ρ, λ)

λj ∼ Γ (Aj, Bj)

Xj |λj ∼ Exp (λj) Xj |ρj, λj ∼ Weibull (ρj, λj)
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Lag

Lag: authorized time for the investigator to report the information in the database

Patient 1

Patient 2

cut-off

authorized lag of report
(e.g. 30 days)

Randomisation Visit’s times
Censorship without lag Censorship with lag
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Exponential

Weibull

Weibull

TreatmentDistribution ImplementationLag Covariates

Analytical

MCMC1

MCMC1

Source

Bagiella & Heitjan

Ying & Heitjan

Servier

1 Two implementation approaches (Sampling Importance Resampling and Hamiltonian Monte Carlo) 
have presented similar results (all other things being equal) on a set of simulated datasets.
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• Sample  in parameter posterior distribution 
• Generate inter arrival times to derive randomisation date for the patients to be 

recruited

𝜇𝑝

Enrollment
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Time-to-event & Time-to-censorship

Bagiella & Heitjan

Ying & Heitjan

Servier

SampleMethod Predictive

λp
j

ρp
j , λp

j

ρp, λp
0 , βp

i

Xj ∼ Exp (λp
j )

Xj ∼ Weibull (ρp
j , λp

j )
X ∼ Weibull (ρp, λp

0 e ∑ βp
i Xi)
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Time-to-event & Time-to-censorship

Bagiella & Heitjan

Ying & Heitjan

Servier

SampleMethod Predictive

λp
j

ρp
j , λp

j

ρp, λp
0 , βp

i

Xj ∼ Exp (λp
j )

Xj ∼ Weibull (ρp
j , λp

j )
X ∼ Weibull (ρp, λp

0 e ∑ βp
i Xi)

Classical 
simulation
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Time-to-event & Time-to-censorship

Bagiella & Heitjan

Ying & Heitjan

Servier

SampleMethod Predictive

λp
j

ρp
j , λp

j

ρp, λp
0 , βp

i

Xj ∼ Exp (λp
j )

Xj ∼ Weibull (ρp
j , λp

j )
X ∼ Weibull (ρp, λp

0 e ∑ βp
i Xi)

Inverse Transform Sampling

Classical 
simulation
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Prediction
Inverse Transform Sampling

• Sample  

• Calculates 

q ∼ U [0,S (tfu)]
S−1 (q) > tfu

S (t) = e−λtρ

S (t)

tfu S−1 (q)

𝑞

S (tfu)

0

1

observed follow-up

time

prediction period

11
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Case Study
Phase II

Phase II in oncology 
Recruitment: 153 patients (FVFP: 29/04/2016 – 12 months enrollment) 
Target: 100 events (completion target event : 15/01/2018) 
Primary outcome: Progression Free Survival 
Design hypotheses:        
Drop-out rate: 1 % per year

medianctrl = 9.1 months, HR = 0.77

12
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Case Study
Phase II

 

    et      

f (x) =
xα−1

βαΓ (α)
e− x

β

𝔼 (X) = αβ 𝕍 (X) = αβ2

Gamma distribution 
(scale notation)

Design hypothesis:  exponential distribution supposed for events so h (t) = λρtρ−1 = λ
                   ρ ∼ Γ (1,1) 𝔼 (ρ) = 1 𝕍 (ρ) = 1Proposition: 

13
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Case Study
Phase II

   λ ∼ Γ (1,
log (2)
median ) 𝔼 (λ) =

log (2)
median

𝕍 (λ) = ( log (2)
median )

2

14

Hypothesis:   represents the speed of events’ occurenceλ ∼ Γ (C, D)

median = ( log (2)
λ )

1
ρ

=
log (2)

λ
⇒ 𝔼 (λ) = CD =

log (2)
median

ρ = 1
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Case Study
Phase II Cut-off: 29/08/2017 

Number of events: 57

15



Capitalist Slides

Case Study
Phase II

Bagiella & Heitjan Approach

Over prediction

Under prediction

16
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Case Study
Phase II

Ying & Heitjan Approach

Over prediction

Under prediction

17



Capitalist Slides

Case Study
Phase II

Servier Approach

Over prediction

Under prediction

18
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Results & Comparison
Distribution: exponential / Weibull

Exponential Weibull

Blinded

Unblinded

Lag

No Lag

Lag

No Lag

• Cut-off: 75% of the time of 
the simulated study 

• Probability threshold: 0.5

19
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Results & Comparison
Unblinded / Blinded

No interest in separating data by treatment arm in 2 different models

More parameters to estimate in Weibull models → pooling treatment arms may improve the 
estimations

20
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Results & Comparison
Lag

With or without lag, good predictions with Weibull models

Counter intuitive results: more investigations are needed

mixed

more precise without lag

Early predictions 
(cut-off 50%)

Mid-predictions 
(cut-off 75%)

Late predictions 
(cut-off 90%)

Exponential models

Weibull models

no difference no difference

no differencemixed

21
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22Conclusion
Recommendations

Pooling data increases the number of events in the model

Blinded
Important on case studies but inefficient in simulations

Lag?

Best results when there are enough events in database

Weibull



Thanks for your attention
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Weibull distribution

Density:                 
Survival:                
Hazard rate:          

Median:                

f (t) = λρtρ−1e−λtρ = h (t) S (t)
S (t) = e−λtρ = 1 − F (t)
h (t) = λρtρ−1

median = ( log (2)
λ )

1
ρ
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Simulation Study
Scenarios

Phase II:  
• 200 patients 
• 12 months accrual  
• 150 events targeted

Exponential

Weibull

Exponential

Exponential

Exponential

Exponential

PhaseDistribution Treatment effect

Weibull

Phase II

Phase II

Phase III PFS

Phase III PFS

Weibull

Weibull

Weibull

Phase III OS

Phase III OS

Weibull

Exponential

Phase II

Phase II

Phase III PFS

Phase III PFS

Phase III OS

Phase III OS

HR = 0.75

HR = 0.9

HR = 0.65

HR = 0.9

HR = 0.65

HR = 0.9

HR = 0.75

HR = 0.9

HR = 0.65

HR = 0.9

HR = 0.65

HR = 0.9

Phase III:  
• 1,000 patients 
• 24 months accrual 
• 600 events targeted

18
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Simulation Study
Models

Hamiltonian Monte Carlo

Lag

Exponential

Exponential

Exponential

TreatmentDistribution Implementation

Exponential

Analytical

Weibull

Weibull

Weibull

Weibull

Analytical

Analytical

Analytical

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

Unblinded

Unblinded

Unblinded

Unblinded

Blinded

Blinded

Blinded

Blinded

Bagiella & Heitjan

Ying & Heitjan

Servier Approach

18
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Simulation Study

• Repeat each simulation 1,000 times 
• Evaluation criterion: difference in month between the target date & the predicted date of the Xth 

event

Results

• Heatmap produced with different cut-off & different probability thresholds

18



Capitalist Slides

Case Studies
Phase II
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Case Study

Example: median =
mediantrt + medianctrl

2
=

medianctrl

HR + medianctrl

2
= 315 days

𝔼 (λ) =
log (2)
median

= 0.0022

Parameters calcul

Scale notation:  

Rate notation:  

λ ∼ Γ (1,0.0022)

λ ∼ Γ (1,
1

0.0022 ) = Γ (1,455)
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Case Study
Phase III

Phase III in oncology 
Recruitment: 320 patients (FVFP: 20/04/2011) 
Target: 216 events (completion target event : 09/05/2018) 
Primary outcome: Progression Free Survival 
Design hypotheses:        
Drop-out rate:

𝑚𝑒𝑑𝑖𝑎𝑛𝑐𝑡𝑟𝑙 = 2.8 months,      𝐻𝑅 = 0.65
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Case Study
Phase III Cut-off: 09/09/2016 

Number of events: 128
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Case Study
Phase III – Ying & Heitjan Algorithm
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Case Study
Phase III – Servier Approach


