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Context

Gliomas are the most common primary brain tumors

GliomaPRD objective: predict the progression of Lower Grade
Gliomas (LGGs)
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Gliomas

Gliomas are neuroepithelial tumours from the supporting glial
cells of the central nervous system (CNS)

They are derived from the astrocytic or oligodendrocytic
lineage

They are divided into high-grade and low-grade gliomas
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Gliomas

High-grade gliomas (HGG) exhibit neoangiogenesis, necrosis
and invasion at tumor borders and are mainly IDH1/2
wild-type

Low grade gliomas (LGG) have slow infiltrative growth,
absence of pronounced neoangiogenesis and are generally
IDH1/2 mutated

HGG have short survival whereas LGG survive longer, albeit
some LGG patients exhibit a more rapid recurrence after
surgery
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Transcan : Objective

Data: RNA-seq from the tumor: N patients with different
PET-SCAN outcome (cold/diffuse)

Objective of the project: predict survival of patient based on
RNA-seq and imaging data
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Problematic: Sample size calculation

How many subjects to identify a predictive signature of genes
involved in the patients survival ?
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Sample size studies: general method
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Sample size studies: pilot data

The structure of data can change the analysis and the statistical
power

Pilot data: simulation of similar data and adequate method −→
more accurate sample size study.
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Pilot data: Compregensive, Integrative Genomic Analysis of
Diffuse Lower-Grade Gliomas
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Pilot data from TCGA

RNA-seq data count from [The Cancer Genome Atlas Research
Network, NEJM, 2015]

278 adults patients having Lower Grade Gliomas of types II
and III

Gene expression of 20000 genes
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Pilot data from TCGA

278 patients × 20000 genes

RNA-seq counts highly correlated

Clinical outcome not available

[The Cancer Genome Atlas Research Network, NEJM, 2015]
identified a signature of 1500 genes associated with LGG
survival times
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Survival times simulations: Pang and Jung, 2013
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Survival times simulations [Pang and Jung, 2013]

Generation of the RNA-seq count for N simulated patients on
p = 20000 genes.

Pilot data {(xk1, ..., xkp), k = 1, .., n} on the n = 278 observed
patients

We generate
zij = (xk ′j − xj)εi/sj

with k ′ a random number from (1, .., n), ε ∼ N (0, 1), xj and
sj respectively the mean and sd of the gene j
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Pilot data is used to respect the correlation structure

Σ̂pxp from zij , with i ∈ [1,N] and j ∈ [1, p]

Generation of Z ′
i ∼ MVN(0p, Σ̂pxp)

B For computational reason, we split into batches of 1000 genes

−→ To generate the signal, we create a special batch of 1500
genes
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Survival times simulations

We generate the Ti times of survival:

Ti = − log(U)

l0exp(βTZ′
i)

U ∼ U(0, 1)

l0 scale parameter determined from the survival of the patients
in the pilot data

βT the vector of effects being 0 except in the special batch
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Detection of the statistical power

Once the times Ti are generated, we can apply an univariate
Cox model to each gene j :

λ(t,Z ′
j ) = λ0(t) exp(βjZ

′
j )

The gene j is detected if the βj is statistically different from 0

Statistical power is then calculated with the proportion of
correctly detected genes
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Sample size study realised
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Results of the simulation study
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Discussion

1. The high correlation implies that:
Even a small relative risk is detected with a satisfying
statistical power

With 50 patients, we can detect more than 50% of the selected
genes, but even by increasing the relative risk or the sample
size, we can not achieve more than 75% statistical power

2. A statistical power of 50% means detecting at least 750 genes
which is good enough for a predictive goal.

3. We might improve the statistical power by grouping the genes
by pathways.
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Article: Identification of differentially expressed gene sets
using the Generalized Berk-Jones statistic

Having a robust method for gene expression analysis

Data: 21 Breast cancer studies to predict tumor grade from
gene expression

20/23 Laura Villain GDR stat et santé



Aim [Gaynor et al, 2019]

Genesets from their transcription factors: 593 sets (from
MSigDB)

Identify the genesets differently expressed between tumor
grade 1 and 3

Method is applied to the 21 datasets to evaluate the
consistency of the selected genesets
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Geneset enrichment principle

Adapting the method to our case: score in survival context

Figure adapted from [Gaynor et al,2019]
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Conclusion

50 patients is a good sample size to detect enough gene for
good prediction performance.

Increasing the sample size would not imply a huge
improvement of the statistical power, thus it is not necessary.

The high correlation between the genes suggest the use of
method using pathways

By formulating a score value in a survival context, we could
adapt the GBJ method for our purpose

It might be difficult to formulate a score that takes into
account the correlation between genes−→ Berk-Jones
method
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GBJ method: model and score

Logit model for µi = E (Yi |Gi ), with Yi the tumor grade of the
patient i and Gi the gene expression of the d genes of a given
geneset :

log(
µi

1− µi
) = α0 + GT

i β, i = 1, .., n

H0 : β = 0dx1

The score value Zj of each gene is calculated:

Z =

∑n
i=1 Gij(Yi − Y )√

(Y (1− Y )
√∑n

i=1 G
2
ij − (

∑n
i=1 Gij)2/n

With Z ∼ MVN(0,Σ). The absolute values |Z |(j) are ordered,
with |Z |(1) being the smallest value.
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GBJ method: threshold function

A threshold function is defined: S(t) =
∑d

j=1 1
{
|Z |(j) ≥ t

}
When the Z are independents, then S ∼ Bin(d , π) with
π = 2φ(t)

When the Z are not independent, S(t) can be approximated
by an Extended Beta-Binomial random variable [Sun and Lin,
2019]

Gene 1 2 ... j ... d
Score 0.01 0.2 ... 1.5 ... 2.5
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GBJ method: statistic value

The value of the GBJ statistic is then calculated:

With JT
d = (1, 1, ..., 1)dx1 and µ̂j,d > 0 solving the equation :

j

d
= 1−

{
φ(|Z |(d−j+1) − µ̂j,d)− φ(−|Z |(d−j+1) − µ̂j,d)

}
It can be seen as "a maximum of a set of likelihood ratio tests
performed on S(t) at all observed test statistic magnitudes greater
than of equal to the median observed magnitude"
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