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Study budget for TU supplies
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. Model

i. General principles
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Model

General principles

3 successive processes:
|.  The recruitment process

Il. The visit process

lll. The withdrawal process

. Total Observed
In a Bayesian framework: data = data *
\ ; \ ' J

—> MCMC estimation of the posterior \ J
Y

posterior likelihood prior
Allows prediction: /\ A
<« <«
S I S + *
predic'tive XX M(e) o o g
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. Model

ii. The recruitment process
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Model

The recruitment process
Today

Opening of (‘3 iy iy
the center * b

v

ce“so“w !

OBSERVED NOT OBSERVED model
To predict |AT: )
selection

exRONRndigb prob Eﬂnethoﬁwmrtz log-normal  log-logistic :|, or

constant accrual  “default choice”  “cure fraction” yet another yet another model
rate averaging
The recruitment rate frailty model
en
may vary betwe h(t) = hy(t) u
two centres U ~ Gam(0)
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Outline

. Model

iii. The visit process
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e

Model Visits are in time
The visit process windows centered
around the theoretical
For a given patient: date
, Today
Recruitment of . V.th
the patient 1 [ 1 |
Vl I . 2L I | S
4 )
Recruitment of Y V.th . oday
the patient OBSERVED . \; |
V2 I I >

| =)
Recruitment of
the patient
|
V3 I ‘ /
To predict new T normal model /

—> Truncated normal dibtitibGgion \_o\NE

v
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Outline

. Model

iv. The withdrawal process
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Model

The withdrawal process

Recruitment of

patient 1
|
|
Toda
Recruitment of OBSERVED y N\QT 0 ED v,
patient 2 V; Vv, | predicted predicted
I I I I . ~

No TU given at V4

—> Inverse p%gggﬁrég\a#e]}%%ﬂ( PM)

To predict new T, .
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. Model

v. Predictions
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Predictions
Layout

1) Predict recruitment dates

—> For all participating centres
— Sort all the dates of pooled centres
Alf the centre is not yet open, predict an

opening date first

2) Predict visit dates

—> For observed and predicted patients

3) Predict withdrawal dates

—>For observed and predicted patients

We repeat the
procedure 1000 times
to get predictive
intervals

« Patient TU demand

over time »

— Corresponds to a blind
number of TU
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o .
Predictions An IRS algorithm is

The IRS algorithm study specific

« Patient TU demand

over time »

—

» Manage patient randomization

IRS algorithm | —

» Monitor TU delivery to the centers

—

« Centre TU need over
time »
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lll. Case study
i. Afinished study
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Case study

A finished study A finished study is
chosen so that we can
compare our
* A 52-week international, multi-centre, randomized, predictions with the

double-blind, placebo controlled phase Il study reality

* 500 patients, 4 treatment arms, 88 centres, 11 countries
e TU=450%€, TU budget = 2 millions €, overage = 60%

* |IRS managed trial (stratification by region)

9 9 9 9
I 12 weeks l 12 weeks l 14 weeks l 14 weeks |
| | | | -
wo wi2z w24 w38 W52
Recruitment of (+10d) (#+ 14d) (+ 14d) End of patient
the patient study (+ 14d)
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Outline

lll. Case study

ii. Results
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Case study

Use of ongoing data

2000 4

Gotadhatsvaflpinint of the recruitment period:

* Fgr the recruitment process:
—> on-mrormative priprs are used

—> Bayesian Model Averaging

* For the visit process:

Nb of TU de an
* For the withdrawal process: -

[ predictive interval
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Case study

Use of ongoing data

Nb of TU demand

Olivier Roux

2000 A

1500 4

1000 1

500 1
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Cutoff midpoint +2 months

Predictive model for stock management

= ground truth

— median

95% predictive interval
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Case study

At the beginning of
the study

No observed data, so we use feasibility data

pre\i

* For the recruitment process:

exponential model
E(A)

—> Inverse gamma distributions
are constructed as priors for A
and 6

* For the vizsbpracassf-fit:

* For the withdrawal process:

Feasibility data are
minary targets g\Ven
bV the part'\cipatmg

countries,

often with an
added margin

inter-arrival time (days)

Olivier Roux Predictive model for stock management
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normaljmodels
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Case study

At the beginning of
the study

2000 1

1500 4

— median

Nb of TU demand

95% predictive interval

500 1
0 -
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Case study
Modelling of the IRS algorithm

Each day the system
checks if there is

sufficient stock for the

next 21 days

——> For each of the 1000 patient TU demand predictions,
simulate randomization

IRS algorithm:

At the opening of the centre:

~ \

—>  If resupply necessary, the system sends TU based on the
demand for the next 60 days * =
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V. Discussion
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Discussion

» Regarding the use:

» Decision support tool that gives data-driven predictions
» Launching of the pilot phase
» Enable TU order optimization

» Regarding the methodology:

» Possible prior-data conflict

» Model selection and model averaging shall be refined Y -
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The Bayesian Framework

Bayes theorem:

p(B|data) o p(data|6) X p(0)

| J | ]\ J

posterior

| | |

likelihood  prior

Prediction:

p(x*|data) = jp(x*|6) X p(6|data)d6

|

|

predictive

Olivier Roux
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Bayesian model averaging

M= {My, ..., My} (finite) set of potential models

M; ~ Mf
BIC; = —2log L+ f x log N = —2log p(D)

[ estimated owing to Laplace transformation of the frailty function

p(D|M;) x p(M;)
S 1 p(DIM;)p(M;))

Bayes theorem: p(M;|D) =

exp(—BIC;/2)
> i1 exp(—BIC;/2)

p(D|M;) ~ exp (—BIC;/2) —— |p(M;|D) =
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The inverse probability method

To generate t* > T*:

1) Draw y* from Y ~ U(0,S(T*))

2) Make the transformation

t* = A'(-log(y*))
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Case study
RMSE validation

——> RMSE validation against a basic algorithm:

e For the recruitment process: Today

Start of (V\ /.‘.\ iy ('\;('\_(v\ 98)/"\ N 4_) Estimated
At theUb'egmnlryg: /\ ',f NN s ’ ’ | : recruitment end

A\

At middoint: RIVISEaIgo (3;57) < RI)/ISEbasic (4'61)
Y

OBSERVED RECRUITMENT
At midpoint +2 months: | RMSEzgt3,00-<RMSER . (4,09)

t | normal model
For the visit process: N(0,8)

uniform model

* For the withdrawal process: 2% chance to withdraw
at each visit * =
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Case study

Optimization of TU orders

1) Consider Tu order scenarios based on estimations of the Centre TU needs over time:

Scenario 1: Scenario 2: Scenario 3: Scenario 4:
Orders done at Orders done Orders done Orders done
each TU delivery monthly guarterly biannually

- TU ordered immediately available

2) Under the following assumptions: _ Expiry date of 1 year

- Cost of an order: 10 000 €

-  The number of missed visits

3) Compare the scenarios on 3 criteria: | - The overage

- The total cost (€) * =
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Prediction with feasibility data

Nb of recruits Nb of TU demand
] J0
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Prediction with ongoing data

Nb of recruits Nb of TU demand
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Prediction with ongoing data

Nb of recruits Nb of TU demand

2000 |
500 |
|
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