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* Quantitative criteria for Go/No Go decisions
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Decision-making in drug development

Making an optimal choice between several
alternatives based on the available information and
preferences of the decision maker

GoiNo Go \No Go
New Ph
112
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Example of decision-making in clinical drug development
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Decision-making in drug development
Examples

« Study level
* Dose selection
* Population

28 November 2016

* Design (sample size, control arms, optimal duration and timing)

* Development level

* Indication, population

* Number of studies, timing of the studies
* Portfolio level

* Drugs to develop

* Budget allocation
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* Time allocation
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How can we compare and optimize study designs, development

plans and business strategies given budget and time constraints?
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* Quantitative criteria for Go/No Go decisions

Portfolio optimization
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Predictive Probability of Success
Introduction

PAST FUTURE
Trial 1 Trial 2 Trial 3 Trial 4
completed completed planned planned

——a— - ----a--

Given what has been observed already, what are

the chances of success of the next trials?

 Success usually defined as a statistically significant result
(Spiegelhalter 2004, O'Hagan 2005)

* Predictive Probability of Success (PPS) = weighted average power
with greater weight given to more likely treatment effects (i.e. those
close to the observed results in the past trials)

* Note: also used to support stop/continue decisions at interim analyses
* See for example publications Gasparini (2013) and Tang (2015)
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Predictive Probability of Success
Methods

For one parameter 6 (e.g. difference between treatment and control)

y = observations , E
d = estimation of 6 fromy fld,| yl); , ;
f = probability distribution f(dsy,)? fds lyyy,): OZ:
f(d4 I y1)? f(d4 I y1ry2)? f(d4 | y1;y2;y3)? N

Prior Trial 1 Trial 2 Trial 3 Trial 4 g

f(5) — Observations:y,/ Observations:y,/ Observations:y,/ Observations:y, g%

J J | |

Posterior: Posterior: Posterior: Posterior: § %

f(6]y,) f(61yy,Y,) f(61yLyys)  f(6lyLyaysys) e

Success of trial i: d.>c c=critical value ( 7 ]

PPS = P(d; > ¢ //} (di | 6) (& | ya, ... Yie1)d(di)d(8)
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density

Predictive Probability of Success
Example for a Normal distribution

After Study 1, Predictions for Study 2

Prior: f(6) Posterior: f(6]y,)
: 1 Non informative prior k2 : ’ / \
-10 -5 0 5 10 -10 -5 0 5 10
delta delta
) f(d,|6=3) )
-10 -5 0 5 10 -10 -5 0 5 10
delta delta

Var (f(d, | 6=x)) + Var (posterior)
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density

Predictive Probability of Success
Example for a Normal distribution

00 03

0.0 03

After Study 1, Predictions for Study 2

Prior: f(6)

Non informative prior

-10 -5 0 5 10

delta

fld,16=3) 3

I
-10 -5 0 g o 10

delta

sity

density

00 03

0.0 03

d

|
Posterior: f(6 }y,)

N

o1 —

|
-10 0 I 10
delta I
|
I
|
/ |
I i I I
-10 0 I 5 10
delta
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density

density

Predictive Probability of Success
Example for a Normal distribution

After Study 1, Predictions for Study 2

Prior: f(6) Posterior: f(6]y,)
:i Non informative prior k2 :i / \
-10 -5 0 5 10 -10 -5 0 5 10
delta delta
f(d,|6=3) )
-10 -5 0 5 10 -10 -5 0 5 10
delta delta

Power = 92%

* Success = statistically significant result
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Predictive Probability of Success
Example

Compare 3 different development strategies
e S1-S2-S3 : 1 ‘preliminary Phase 3’ trial + 1 full Phase 3 study
* S1andS2: conduct these trials with 2 different doses
* S3:1 dose determined by a ‘Phase 2b trial’
* Success = significant result in a test of superiority and satisfying a safety
condition
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51 S2 S3
Outcome Assurances

v

o3
Failure at Phase 2b 0.000 0.000 0.145 E
Failure at preliminary Phase 3 0.056 0.068 0.023 g
Failure for futility at futility analysis  0.050 0.102 0.034 §
Failure for safety at interim analysis 0.049 0.021 0.044 _5 9
Failure for futility at interim analysis 0.039 0.076 0.025 T g
Success at interim analysis 0.253 0.267 0.226 % 9
Failure for efficacy at final analysis 0.063 0.102 0.052 < §
Failure for safety at final analyvsis 0.128 0.068 0.118 2@
Success at final analysis 0.362 0296 0.333
FAILURE 0.385 0.437 0.44 11
SUCCESS 0.615 0.563 0.559

Table 1. Assurances for three different strategies.

Source: O’Hagan 2005




Predictive Probability of Success
Conclusion

* The definition of “success” should be agreed with the project team

* Evidence-based methods
* Based on prior knowledge rather than on questionable hypotheses
 Clinical data should be available: may not be appropriate in very early
development
» Bayesian framework: PPS are updated with the accumulation of
knowledge from trial to trial

* Whatis a “good PPS"?
* Phase/disease/project/team dependent
* Low amount of evidence = PPS close to 50% -2 Uncertainty to take a
decision

* Previous and future trials should be done in the same context
* Endpoint, regimen, duration, population...
* Otherwise, the relationship between the parameters of the different
contexts should be considered

—
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Predictive Probability of Success

Portfolio optimization
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Quantitative criteria for Go/No Go decisions
Introduction

Phafm.aceutical
MAIN PAPER Statistics

(wileyonlinelibrary.com) DOI: 10.1002/pst.1746 Published online 17 March 2016 in Wiley Online Library
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Decision-making in early clinical
drug development

Paul Frewer,?* Pat Mitchell,? Claire Watkins,? and James Matcham?

* Inspired from Lalonde 2007
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» Systematic approach requested by the governance
boards in AstraZeneca Early Clinical Development
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Quantitative criteria for Go/No Go decisions
Decision framework (Frewer 2016)

* Three outcome decision

(G0 consider | NSEGRNNN

* Decision parameters

28 November 2016

Target Value (TV) Desired level of performance

Lower Reference Value (LRV) Minimal level of performance
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False Stop Risk Risk of a “Stop” decision if the truth is better ‘;3’
than the TV (typically10%) =
False Go Risk Risk of “Go” decision if the truth is at worse ©

than the LRV (typically 20%)
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Quantitative criteria for Go/No Go decisions
Visualization of the framework (Frewer 2016)

* Goif: PCT,,> LRV and PCTy,> TV
 Conmsider if : PCT,,< LRV and PCTy,> TV
* Stop if : PCTy,< TV

Where PCT, denotes the x-th percentile of the distribution of the estimated treatment effect
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 All possible cases:

p
GO <> )
o
C
o < > :
=5
CONSIDER S8
-
= =
STOP D 39
G5

stop € >

e
STOP 16
LRV TV

Treatment effect

<PCT,;, 2PCTg,
Source: Frewer 2016




Quantitative criteria for Go/No Go decisions
Example

Go/No Go criteria for neutrophil differential used as a biomarker
for Chronic Obstructive Pulmonary Disease (COPD)

1) Decision framework 3) Results: the observed level of
SlllE s S reduction turned out to be 56%:
indicates a clear GO

== Mew drug
Placebo

=)
[=]

fi1]
(=]

1 i
1% 207 25% 0%
LAW v
Reduction in %neutrophil difizrential

Neutrophil differential (%)

i
(=]

o 5 10 15 20 o5
Hours after dose

2) Operating characteristics

Probability of different decisions under different true effects

True effect
(reduction)
TV (25%)
LEV (10%) 20% 38% 42% 58% 50%
Placebo (094) 6% 25% 69% 3% 04% Source: Taib 2016

—
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Quantitative criteria for Go/No Go decisions
Discussion (Frewer 2016)

The chance of being in the “Consider” zone should not be too high -
importance of operating characteristics

Consistent approach to quantitative decision making for all phase
decisions

* Early phases: decision criteria can be based on biomarkers
* Late phases: decision criteria can be based on PPS

Univariate approach, could be extended to multiple endpoints

* For 2 endpoints: 9 different scenarios = the clarity of the decision process
decreases with the number of endpoints

Clear, simple approach
* Governance boards are enthusiastic with the “traffic-light framework”

* Concerns are raised by statisticians : too much focus on the result, lack of
understanding of the method and its uncertainties
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Predictive Probability of Success

* Quantitative criteria for Go/No Go decisions
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Portfolio optimization
Introduction (Patel 2013)

PORTFOLIO
Planning horizon: K months
Total budget: B

X2
@

D

/

Drug i
For 2 future trials

Drug effect assumptions
Mean response, SD of the response...

Designs assumptions
j=1,...,) set of possible trial designs
n; = sample size for design j for drug i

Cash flow assumptions
k=1,...,K month of the start of the trials
(other parameters, see next slide)

Objective: find the optimal sample size n; and the optimal month k

of start of the trials for each drug in order to maximize the
expected financial value of the portfolio

28 November 2016
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Portfolio optimization
Introduction (Patel 2013)

* Cash flow assumptions: lot of assumptions
Contribution from
the sales / month

28 November 2016

Fixed treatment Enrollment rate
) period /month ‘l: Duration of the sales
Start of the trial .
Sample size R
Cliny .rrlll' rial Pime Drug SW E"O; of the
" exclusivity
- I,
) b+n/h, N '.S'_H ) X " period

oo e o O SR i o bt

k T, |Tq4 v T ‘/
NN

oo End of

f »I« the trial

F <«—— Fixed cost to launch the drug

Start peak of
the sales
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Cash flow rate ($M/maonth)
=

—
N
=

Fixed cost to start  €ost/ patient-

the trial month
Source: Patel 2013




Portfolio optimization
Methods (Patel 2013)

* Expected Net Present Value for drug i with trial design j started at
month k

ENPV;y = PPS;;.NPViy|Go + (1 — PPS;). NPV |NoGo

* Based on the drug effect assumptions and the design assumptions
we can calculate the PPS;; = Predictive Probability of Success

* Based on the the design assumptions and the cash flow assumptions
we can calculate the Net Present Values:

NPV, |Go = Revenue from the sales - Cost of the trials
NPV, |NoGo = 0 - Cost of the trials

* Objective : maximize the total ENPV according to the size of the
trials n; and the month k of the start of the trials

ENPVTGI&! — S:; y:j y:k ENPVUR

for trials started at time k

28 November 2016

%)
o3
o)
9
©
=
2
—
©
=2
()
N}
c
L -
S
o
o
%)
xe)
Lo
n

G. Saint-Hilary

—
N
N




Portfolio optimization

ReSUItS (Patel 2 O 1 3) [ Drugs in the portfolio
\, \/:
Table 1. Financial, scheduling, and Bayesian prior parameters and optimum solution. ©
.
Drugl Drug2 Drug3 Drugd DmpS Drugé Dmp? %
" Parameters é
Drug Mean response (4;) 0.5 04 0.5 0.4 0.4 0.3 0.25 o
effect | SD of response (o;) 2 1.8 2 2 1.5 1.5 1 -
Ist in class? No Yes No No Yes Yes Yes =
SD of Bayesian prior for placebo {1,".-':]; 0.15 0.15 0.15 0.15 0.15 0.05 0.15
. SD of Bayesian prior for drug (;) 0.15 0.3 0.15 0.15 0.3 0.2 0.3
™ Trial fixed cost ( f;, K$) 2805 15 325 2125 240 125 500
Patient cost (c;, K$) 11 17 25 24 26 15 14 9
Budget | Fixed setup cost (F;, m$) 50 500 400 300 500 300 1000 G
Contribution ( R;. m$/month) 175 B3 400 200 45 250 500 @
e Market size M S L M 5 M L =
B Exclusivity period (T;, months) 108 120 135 180 155 180 145 - 2
Month when drug will be available tor 1 1 3 6 13 18 25 T3
Time | phase 3 trials T <
Enrollment rate (4 ;, patients/month) 30 50 40 6l 60 S0 45 € 8
_ Treatment period per patient (b; , months) 0.3 1 12 12 24 6 12 3 §
O wn

Optimal solution
Optimal solution

Optimal sample size 832 1054 832 1300 132 1300 674
Optimal ENPV (m$) 4818 1849 10057 3643 457 5959 5754
Optimal schedule (month) 1 | 3 6 13 18 25
Probability of success (Pos; ;) 0.67 0.49 (.67 (.60 (.49 0.53 0.38 ]

. expected value of net present value;

23

), standard deviation; 5, small; M, medium: L, large.

Source: Patel 2013




Portfolio optimization
Discussion (Patel 2013)

Maximizes the value of a portfolio under a global budget
constraint

* Better than optimizing each drug separately

* Optimizes the variables that have the greatest impact on the costs:
sample size and timing

28 November 2016

Complexity

* Lot of assumptions: high level of uncertainty = importance of
sensitivity analyses

* Challenging communication with governance boards

Focus on the financial value of the portfolio

 Lack of clinical considerations? = optimal solution between
clinically and scientifically justified proposals
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Integration of knowledge of experts with different specializations
(statistics, finance, strategy, regulatory affairs...)




General Conclusion

* Quantitative Decision-Making is increasingly used in the
Pharmaceutical Industry

* There is not one general and comprehensive method

28 November 2016

* Evidence-based methods avoid relying on questionable
assumptions

* Subjectivity (preferences, targets) can be incorporated but should
be challenged

* Increased complexity = more comprehensive methods but
increased uncertainty and challenging communication
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* Importance of sensitivity analyses
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- Implementation: decision tools are developed/in development
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