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THE GAME



The background (part of…)

The cost of studies increases along the R&D chain
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According to Tufts Center

$2.6Billion per approved drug

11.8% of drugs entering Clinical 
development are approved



Trends 
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-Predictive models
-Virtual patients
-Biomath models
-Bayesian statistics
-Biomarker
-Translational medicine
-Implementing Technologies

Improve and Predict p(ts)
Increase return on investment

Prediction as development tools
Prediction as support to decisions



Decisions through drug development and sales

Discovery / 
pre-clinical Phase I Phase II Phase III Regulatory

review
Phase IV / 
manufact.

Target 
selection

Candidate 
selection

Initiate
Phase I

Initiate
Phase II

Product 
develop.

Go 
Phase III

Submit
file

Release 
product



REPRODUCIBILITY CRISIS
The P value and the



The “Bayer” and “Amgen” publications



The “Bayer” publication (2011)



Current concerns about reproducibility

“… it has become clear that 
biomedical science is plagued 
by findings that cannot be 
reproduced”
“Science as a system should 
place more importance on 
reproducibility.”



From May 2013 Nature introduced editorial methods to 
improve the consistency and quality of reporting
 More space given to method sections
 Key methodological details will be 

reported
 Greater examination of statistics
 Encourage transparency, for 

example by including raw data

Nature’s Solution

 Central to this is a new checklist prompting authors to 
disclose technical and statistical information



Growing Body of Evidence

Stroke, 2009 

Nature, March 2012

June 2010

July 2007

October 2012

August 2012

February 2013

Nature, Sept 2011



Over a Decade of Discussion

“Many scientists ignore the basic principles of experimental design, analyse 
the resulting data badly, and in some cases reach the wrong conclusions.”

July 2003



The Articles Keep Coming …

Oct 2014

June 2014

Nov 2013

Jan 2014

“Sometimes the fundamentals get pushed aside – the 
basics of experimental design, the basics of statistics”

Lawrence Tabak, Principal Deputy Director of the 
NIH



Nature, 2014



The editors endorse new rules







2015 
21st Century Cures Act US Congress Bill

18



Raising concerns about use of p-values

… implying “that a hypothesis that may be true may be rejected because it has not 
predicted observable results that have not occurred.”

-Sir Harold Jeffreys (Astronomer, Geophysicist, Mathematician), 1939

“… surely the most bone-headedly misguided procedure ever institutionalized in 
the rote training of science students.” 

-William Rozeboom ( philosopher of science ), 1960
“ . . .  dangerous nonsense (dressed up as the ‘scientific method’) and will cause 
much trouble before it is widely appreciated as such.” 

-A.W.F. Edwards, FRS ( statistician, geneticist, Fisher protege´ ), 1972

… misunderstood? “If you use p=0.05 to suggest that you have made a discovery, 
you will be wrong at least 30% of the time.”

-David Colquhoun, FRS ( British pharmacologist ), 2014

… banned from the journal Basic and Applied Social Psychology
“… prior to publication, authors will have to remove all vestiges of the NHSTP (p-values, t-values, F-values, statements 
about ‘significant’ differences or lack thereof, and so on).”

-David Trafimow and Michael Marks (journal editors), 2015

From Dave LeBlond, 2015



As the American Statistical Association 
officially reminded in March 2016….



Finally in June 2016, the ASA reminded in a press realse….

P-values can indicate how incompatible the data are with a specified statistical model.
P-values do not measure the probability that the studied hypothesis is true, or the 
probability that the data were produced by random chance alone.
Scientific conclusions and business or policy decisions should not be based only on 
whether a p-value passes a specific threshold.
Proper inference requires full reporting and transparency.
A p-value, or statistical significance, does not measure the size of an effect or the 
importance of a result.
By itself, a p-value does not provide a good measure of evidence regarding a model or 
hypothesis.



New York Times June 6th 2017



Le Monde, 2 octobre 2017





A world beyond p-values

''The most important task before us in developing statistical science is to demolish the P-
value culture, which has taken root to a frightening extent in many areas of both pure and 
applied science and technology.''    
Nelder, J. A. 1999. Statistics for the millennium. Statistician 48:257–269.

“Scientific conclusions and business or policy decisions should not be based only on 
whether a p-value passes a specific threshold.”
Ron Wasserstein, President American Statistical Association, March 2016

“… we recommend abandoning the null hypothesis significance testing paradigm entirely, 
leaving p-values as just one of many pieces of information with no privileged role in 
scientific publication and decision making.” 
McShane, Gal, Gelman, Robert & Tackett, 21SEP2017



The European Quality In Preclinical Data (EQIPD) project

Members of the EQIPD consortium have been pivotal in 
producing substantial evidence which suggests that the 
robustness, rigor and validity of preclinical research is 
limited and that this provides a barrier to the effective and 
efficient development of new drugs. 
We believe there is a need for simple, sustainable solutions 
that facilitate data quality without impacting innovation and 
freedom of research.





HOW TO SURVIVE THE 
REPRODUCIBILITY CRISIS ?
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Embrace the Lifecycle vision in research
Be inspired by the Bayesian Statistics in decision making
Always apply Design of Experiments
− Stop thinking analysis of data, think modeling
− It goes beyond blinding, randomization….
− Think about robustness and generalysability

Evaluate the “capability” of the assay to achive objectives
Continuously Control and assess performance and improve
Be transparent  

Proposal

© PharmaLexMay 2016



LIFECYCLE APPROACH
Quality by Design and



Quality by Design approach

1. Define objectives and criteria of success
2. Identify biological/animal model and relevant quantifiable quality attributes (end-

points) linked to the objectives
3. Develop jointly a modeling strategy (or analyses) of the data to generate

1. Relevant with the objectives 
2. Aligned with the MBDD strategy

4. Optimize design of assays and studies to probability of success and cost/time 
effectivness

5. Validate, control and improve the capability of the assays/studies



Q8(R2) - Example QbD Approach

Analytical Target Product Profile (aTPP)

Determine “potential” critical quality attributes (CQAs)

Identify link of assay parameters to CQAs and perform risk 
assessment

Develop a Design of Experiment and a design space 

Design and implement a control strategy

Manage assay lifecycle, including continual improvement



Lifecycle vision

x E

DSp=0.65

Development Validation Transfer/bridge Routine

How to develop, validate, transfer and maintain a procedure to ensure it 
will continuously produce results that are fit-for-use?

How to keep the risk low and maintained along the value chain?



Bayesian statistics and learning process

Evaluate if you reached your objectives
− Given the data
− Given the knowledge

 Bayesian statistics

11 / 18



HOW TO MAKE A DECISION



The objective: is my treatment effective ?

How  to make a decision ?

A

B

What is the probability of obtaining the observed 
data, if the treatment is not effective?

What is the probability that the treatment is 
effective, given the observed data?

2 / 18



Two different ways to make a decision based on

A
Pr 		܉ܜ܉܌	܌܍ܞܚ܍ܛ܊ܗ	 ሻ	܍ܞܑܜ܋܍܎܎܍	ܜܗܖ	ܛܑ	ܜܖ܍ܕܜ܉܍ܚܜ	

 Better known as the p-value concept

 Used in the null hypothesis test (or decision)

 This is the likelihood of the data assuming an hypothetical 
explanation (eg the “null hypothesis”)

 Classical statistics perspective (Frequentist) 

B
Pr 		܍ܞܑܜ܋܍܎܎܍	ܜܖ܍ܕܜ܉܍ܚܜ	 ሻ	܉ܜ܉܌	܌܍ܞܚ܍ܛ܊ܗ	

 Bayesian perspective

 It is the probability of efficacy given
the data

3 / 18



The diagnostic test example 

Cancer ? diagnostic test result

5 / 18



The accuracy of a diagnostic test is assessed as follows:

Sensitivity: 		Pr 	ܜܔܝܛ܍ܚ	܍ܞܑܜܑܛܗܘ ሻܚ܍܋ܖ܉܋

Specificity: 			Pr 	ܜܔܝܛ܍ܚ	܍ܞܑܜ܉܏܍ܖ ሻܚ܍܋ܖ܉܋	ܗܖ

A problem of decision making

In practice: 

Given that the diagnostic test result is positive, 
what is the probability you truly have cancer?

Pr 	ܚ܍܋ܖ܉܋	 ሻ	ܜܔܝܛ܍ܚ	܍ܞܑܜܑܛܗܘ	 ൌ	?

6 / 18



Example

prevalence =
1%

sensitivity =
86%

specificity =
88%

Pr 		ܚ܍܋ܖ܉܋	 ሻܜܔܝܛ܍ܚ	܍ܞܑܜܑܛܗܘ	 ൌ 	
1

12 ൅ 1 ൌ 0.077

Agresti, A. (2007). An Introduction to Categorical Data Analysis. Wiley, 2nd ed.
Colquhoun, D. (2014). An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open sci. 1(3): 140216

How can that be so low?
The small proportion of errors for the 
large majority of women who do not 
have breast cancer swamps the 
large proportion of correct diagnoses 
for the few women who have it.

7 / 18



The animal study analogy

Pr 	܍ܞܑܜ܋܍܎܎܍	܏ܝܚ܌ ሻ܉ܜ܉܌	 ൌ	?

effective? Animal study data

depends largely on prior probability that there is a real effect

8 / 18



“If you use p = 0.05 to suggest that you have made a discovery, you will be wrong at least 30% of the 
time.”

Colquhoun, D. (2014). An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open sci. 1(3): 140216.

Pr 	ܜ܋܍܎܎܍	ܔ܉܍ܚ ܘ	 ൏ 0.05ሻ ൌ 	
80

80 ൅ 45 ൌ 0.64

9 / 18

prior probability



“If you use p = 0.05 “….when you are in early discovery 

Pr 	ܜ܋܍܎܎܍	ܔ܉܍ܚ ܘ	 ൏ 0.05ሻ ൌ 	
8

8 ൅ 50 ൌ ૙. ૚૝	‼‼

9 / 18

prior probability

P(real)=0.01

No Effect
990 tests

Effect =
10 tests

8 true
pos tests

2 false 
neg tests

940 true
neg tests

50 false 
pos tests



“If you use p = 0.05 “…. if you have a good prior as before starting a Phase III 

Pr 	ܜ܋܍܎܎܍	ܔ܉܍ܚ ܘ	 ൏ 0.05ሻ ൌ 	
560

560 ൅ 15 ൌ ૙. ૢૠ

9 / 18

prior probability

P(real)=0.7

No Effect
300 tests

Effect =
700 tests

560 true
pos tests

140 false 
neg tests

285 true
neg tests

15 false 
neg tests



False Discovery Rate for p<0.05, power=0.8 as function of Prior Probability
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False Discovery Rate for p<0.05, power=0.8 as function of Prior Probability
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Tufts report: 11.8% drugs 
entering Cinical Development 
reach approval
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P<0.005 is just a Quick Fix 

70 Statisticians publish a paper in July 2017:

"We propose to change the default P-value threshold for statistical significance for claims 
of new discoveries from 0.05 to 0.005.“

But few weeks later, Gelman et al said:

“… we recommend abandoning the null hypothesis significance testing paradigm entirely, 
leaving p-values as just one of many pieces of information with no privileged role in 
scientific publication and decision making.” 
McShane, Gal, Gelman, Robert & Tackett, 21SEP2017



Some critics about using p-values and Frequentist approach

Efficacy is not a hypothesis; it is a matter of degree
Would you rather know the chance of making an assertion of efficacy when the drug has 
no effect, or the chance the drug is effective?
Need a formal way to insert extra-study information
− skepticism
− trustworthy evidence / past data

Frequentist paradigm requires a certain design rigidity
Frequentist approach conservative when want to learn continuously

Frequentist mainly provide study specific conclusions (no learning)

From Frank Harrel, 2017



THE VALUE OF 
BAYESIAN APPROACH
IN DRUG 
DEVELOPMENT
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The raise of Bayesian statistics

51

Bayes’ Rule:    
 

   
 

, |
|

     
   

 



Agenda

Bayesian principles
Posterior computation
Predictive Distribution
Comparison Bayesian-Frequentist
Prior elicitation



Bayesian principle

Example: clinical trial to collect evidence of an unkown treatment effect
− Frequentist analysis:

• point estimate and confidence intervals as summaries of size of treatment effect
• Asks: what this trial tells us about the treatment effect

− Bayesian analysis:
• Before the trial: a priori opinion on the treatment effect
• Asks: how should this trial change our opinion about the treatment effect?

Motivations for adopting Bayesian approach:
− Natural and coherent way of thinking about science and learning



Bayesian principle

After having observed the data of the study, the prior distribution of the treatment effect is 
updated to obtain the posterior distribution 

Instead of having a point estimate (+/- standard deviation), we have a complete distribution 
for any parameter of interest
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P(treatment effect > 5.5)= P(success)
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Bayesian principle

Total
Data

Available
Data

Observed
Data =+

“LIKELIHOOD”
data coming from the 

experiment 

“POSTERIOR DISTRIBUTION”
combination of information collected before the 

experiment 
and what comes from the experiment data

“PRIOR DISTRIBUTION” 
from previous studies, expert 

opinion, literature,…



Bayesian principle

Let’s consider that  is the parameter of interest (ex: treatment effect)
 is treated as random variables

1. Prior distribution of parameter  : p()
− Distribution of  before any data are observed
− Reasonable opinion concerning the plausibility of different values of 
− Ideally based on all available evidence/knowledge (or belief)
− Or deliberately select a non-informative prior 



Examples of prior distributions
Gamma distributions Beta distributions

• Prior distribution -> Specify the domain of plausible values

-> Specify the weights given to these values

• Prior distributions do not have to be a Normal (not only prior mean and prior variance)

• Prior distributions ≠ initial values.

Bayesian principle



Bayesian principle

2.    Likelihood:
− Conditional probability of the data given : p(y| )
− Based solely on data 

3.     Posterior distribution: 
− Distribution of  after observed data have been taken into account: p(|y)
− Final opinion about 

4. Predictive distribution: 
− Given the model and the posterior distribution of its parameters, what are the plausible values 

for a future observation y*?
p(y*| ) 



Bayesian principle



Uncertainty is described in terms of probability :

Bayesian principle
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Posterior distribution

P(θ>5.5)=0.401

60



Posterior computation

 The posterior distribution contains everything that can be
said about θ.

 To summarize its information content:
 Measures of location:posterior mode, posterior median, posterior

mean

 Measures of spread: Posterior variance

 Bayesian credibility interval:

 Get the quantiles of the distribution (2.5% and 97.5%)

 An interval that contains 95% of the posterior probability for θ, i.e. 
95% most plausible/credible values

 Any probability on the values of θ or on a function of θ



Bayesian Predictive Distribution

The Bayesian theory provides a definition of the 
Predictive Distribution of a new observation given past data.

222   ),(),,~()~(
2


 

dddatapdataxpdataxp   

Joint posteriorModel
Integrate over parameter distribution



Difference Simulations/Predictions

Simulations
the “new observations” are drawn 
from distribution “centered” on 
estimated location and dispersion 
parameters (treated as “true 
values”).

Predictions
the uncertainty of parameter 
estimates (location and dispersion) 
is taken into account before 
drawing “new observations” from 
relevant distribution



3rd , repeat this 
operation a large 
number of time to 
obtain the predictive 
distribution

Practically, how to make predictions

1st , draw a mean and 
a variance from:

Posterior of mean µi

Posterior of Variance
σ²i given mean drawn

2nd , draw an 
observation from the 
resulting distribution
Y~ Normal(µi, σ²i )

X
X

X
X  



1. Random vs fixed:

• Bayesian: probability of parameters given observed data

• Frequentist: probability of observed data given parameters

2. Evidence used (in the analysis):

• Bayesian: all available (relevant) information/knowledge

• Frequentist: specific to experiment

Comparison Bayesian-Frequentist



3. Inference

• Bayesian : examine the probability of  given the data.

• Frequentist : tests of significance are performed by supposing that 
a hypothesis is true (the null hypothesis) and then computing the 
probability of observing a statistic at least as extreme as the one 
actually observed during hypothetical future repeated trials. (This 
is the P-value).

(p-value=probability to observe something more 
disadvantageous for H0 than what we have observed, if H0 is 
true)

Comparison Bayesian-Frequentist



4. Intervals
• Bayesian : credible interval : 95% most plausible/credible values 

• Frequentist : Confidence interval: “If we repeat the same 
experiment a large number of times, the confidence interval will 
contain the true value in 95% of the cases.”

Comparison Bayesian-Frequentist



5. Design flexibility

• Bayesian : May adapt trial design as evidence accumulates

− Sample size does NOT need to be pre-specified

− Interim analysis may be conducted anytime and at any  frequency

• Frequentist: Interim analyses possible but restricted

− Must be pre-specified

− Number and timing affect the analyses

Comparison Bayesian-Frequentist



THE VALUE OF DESIGN OF 
EXPERIMENTS



The Weighing Problem



The problem and the hardware

The problem
Find the weights of 3 objects A, B, and C, in 4 weighings and with the best precision

The hardware
A pair of scales to be equilibrated with weights

A B C



Strategy 1

Weigh one object at a time Design matrix

Y1

Y2 A

Y3 B

Y4 C

0  :  the object is not on the scales
1  :  the object is on the right scale
-1 :  the object is on the left scale

A B C
Exp 1 0 0 0
Exp 2 1 0 0
Exp 3 0 1 0
Exp 4 0 0 1



What's the precision on the estimations ?

The variance of the error on each weighing Y1, Y2, Y3, and 
Y4, is V() = ²

Variance properties

V(X+Y) = V(X) + V(Y) + 2* Cov(X,Y)
V(X-Y)  = V(X) + V(Y)  - 2* Cov(X,Y)
V(aX+b) = a² V(X)

Variances of the estimators

V(M0) = ²

V(MA) = V(MB) = V(MC) = 2 ²
How to get more precise estimations ?

Weight estimators

M0 =     Y1
MA =     Y2 - Y1
MB =     Y3 - Y1
MC =     Y4 - Y1



Strategy 4

Design matrix

A B C
Exp 1 -1 -1 -1
Exp 2 -1 1 1
Exp 3 1 -1 1
Exp 4 1 1 -1

V(MA) = V(MB) = V(MC) = (² + ² + ² + ²) / 16  = ² / 4 Cost = 4,000 $

-Y1 Y2 CBBA
C

A

Y3 CAB Y4 BAC



Why has precision been improve by a factor 8 ?

A B C
Exp 1 0 0 0
Exp 2 1 0 0
Exp 3 0 1 0
Exp 4 0 0 1

A B C
Exp 1 -1 -1 -1
Exp 2 -1 1 1
Exp 3 1 -1 1
Exp 4 1 1 -1A

B

C

A

B

C

Strategy 1 Strategy 4



FORMAT OF ASSAYS



Z-factor (1/2)

negative control positive control

ିߤ ାߤ

ିߪ3 ାߪ3

Zhang J.-H., Chung T. D. Y. & Oldenburg K. R. (1999). A Simple Statistical Parameter for Use in Evaluation and Validation of 
High Throughput Screening Assays. Journal of Biomolecular Screening 4, 67–73. 

 separation band:
ሺߤା൅3ߪାሻ െ ሺିߤെ3ିߪሻ 	െ ሺ6ߪା ൅ ሻିߪ6 ൌ ሺߤାെିߤሻ െ ሺ3ߪା ൅ ሻିߪ3

 dynamic range: ߤା െ ିߤ



Example of Increasing mean precision

True mean potency

1 run, 2 rep/run far from truth,
“Luck of the draw”
Little info provided by 2nd rep – not worth much

True mean potency

2 run, 1 rep/run 

2nd rep worth as much as first
More likely for average to
be closer to the truth

21 2
rep

2
run  22 2

rep
2
run Std. Err of Estimate

e.g.,
Effect of 
Standard



Common error encountered: standardization vs generalizability

Standardization: Usually scientists try to obtain the results in condition with 
smallest variance

 They introduce biais in results

Generalizability: The experimental units should be spread across the conditions 
with the greatest variance

 This eliminate the biais linked to conditions
The Precision can be improved by the sample size
The conclusions should be “whatever day, strain, ….”

This is key to Reproducibility
nprprr

AnimFamiExp sss
SE



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OBJECTIVE AND END-POINT
Example 1



An example (1) - objectives

Define and share objectives and criteria of success

Metabolic desease: 
Find a compound that rapidly control the level of glycemia in diabetes for several hours .
The new compound should have high chances not to be inferior to the Reference product
Margin of non-inferiority is 80% of reference



Reference Vehicle

An example (2) – end-points

 Identify animal model and end-points linked to objective
 Lower the 2hour blood glucose level in OGTT

 Decrease rapidly glucose from 10’ to 25’



proc mixed data=data;
class study mouse_id treatment time;
model y = time treatment treatment*time;
random study / group=treatment;
repeated / subject=mouse_id(study) 

type=ar(1) 
group=treatment;

run;

lsmeans treatment;

estimate “product A dose 2 - t2-t3" 
intercept        2

time             0 1 1 0 0
treatment        0 0 0 2 0
treatment*time   0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 

0 1 1 0 0
0 0 0 0 0 / divisor = 2;

Modelling
Translate the objective
Allow precise estimate of criterions
Based on literature knowledge
Use logitudinal data (or individual trajectories)

Model the data to ….
…estimate global effect…..

…or speed of onset…..

An example (3) - Modeling



Individual and average profiles of log glucose levels

log transformation

log area under 
average profile



Log areas under individual profiles

Within each treatment group, the diamonds indicate the positions of the means within a study while the dashed line indicates 
the position of the overall mean across all studies.

historical data historical data



Z-factor (1/2)

negative control positive control

ିߤ ାߤ

ିߪ3 ାߪ3

Zhang J.-H., Chung T. D. Y. & Oldenburg K. R. (1999). A Simple Statistical Parameter for Use in Evaluation and Validation of 
High Throughput Screening Assays. Journal of Biomolecular Screening 4, 67–73. 

 separation band:
ሺߤା൅3ߪାሻ െ ሺିߤെ3ିߪሻ 	െ ሺ6ߪା ൅ ሻିߪ6 ൌ ሺߤାെିߤሻ െ ሺ3ߪା ൅ ሻିߪ3

 dynamic range: ߤା െ ିߤ



Z-factor (2/2)

Z-factor ൌ 1: ideal assay; as	ሺ3ߪା ൅ ሻିߪ3 approaches zero, i.e. very small standard deviations, 
or as ߤା െ ିߤ approaches infinity.
Z-factor between 0.5 and 1: excellent assay; separation band is large.
Z-factor between 0 and 0.5: separation band is small.
Z-factor ൏ 0: no separation band; there is too much overlap between the positive and negative 
controls for the assay to be useful.

Z-factor ൌ ୱୣ୮ୟ୰ୟ୲୧୭୬	ୠୟ୬ୢ
ୱ୧୥୬ୟ୪	ୢ୷୬ୟ୫୧ୡ	୰ୟ୬୥ୣ

ൌ 1 െ ଷఙశାଷఙష
ఓశିఓష

Zhang J.-H., Chung T. D. Y. & Oldenburg K. R. (1999). A Simple Statistical Parameter for Use in Evaluation and Validation of 
High Throughput Screening Assays. Journal of Biomolecular Screening 4, 67–73. 



Overall z-factor (1/3)

Z-factor ൌ 0.047

normal approximation to 
log	ሺAUCሻ
ܰ ൌ 9

ߤ ൌ
4.171
sd
ൌ 0.208

ߤ ൌ
5.135
sd
ൌ 0.100



Overall z-factor (2/3)

only ୠୣ୲୵ୣୣ୬ଶߪ plays a role



Changing the design can be a remedy

Var തܻ.. ൌ 	
ୠୣ୲୵ୣୣ୬ଶߪ

ܵ ൅
୵୧୲୦୧୬ଶߪ

ܵ ൈ ݊

ܵ ൌ number of studies (“runs”)										n ൌ sample size within a study



Overall z-factor (3/3)



Classical AUC

Sustained effect Speed of onset
Longitudinal model

Z-factor=0.047

Z-factor=0.457 Z-factor=0.390

Classical analyses

Increasing nb animals doesn’t help

Spreading animals in several studies helps

With appropriate modeling, the capability of the assay is fit-for-purpose

With classical analyses, the capability of the assay is not satisfactory

An example (4) – optimize assay to support 
model



Control Limits Reference

Control Limits Vehicle

To guarantee Capability, future study results should fall
within the control limits

An example (5) – Control and improve capability



Sustained effect

Speed of onset

Ta
rg

et
 =

 8
0%

 R
ef

er
en

ce

Reference
Product A Dose 3
Product A Dose 2
Product A Dose 1
Vehicle

Reference
Product A Dose 3
Product A Dose 2
Product A Dose 1
Vehicle

Even if results are 
« statistically significant » 
the probability to achieve
the target is very low
(Probability of Success) 

Product 
improve
sustained effect

Product has not 
real speed of effect

Ta
rg

et
 =

 8
0%

 R
ef

er
en

ce

An example (6) – Allow riskless decision
making



Impact

Improve overall efficiency
− Use Prior knowledge to improve precision
− Use historical controls to reduce # of animals
− Provide easy to interpret statistics linked to the objective

De-risk decision making
− Progressively get away from p-values
− Currently: attempt to assemble a clear picture based on a patchwork of p-values
− Future: Provide the predictive probability of success of the objective
− Provide interpretable (graphical) results
− Understand and keep the uncertainty along the value chain


