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Introduction

Context

m Clinical trials are the gold standard to demonstrate efficacy in
clinical research

m Participants receive specific interventions according to the
protocol

m 4 phases
m Phase I: Evaluate safety, tolerance threshold, side effects on
healthy volunteers
m Phase lI: Test efficacy (and continue safety): comparative studies
m Phase lll: Gather more information on safety and efficacy
m Phase IV: After approval, detect possible rare undesirable side
effects

m However, limitations need to be acknowledged (less appropriate
for rare conditions, restricted generalization...)

m Observational studies can complete missing information of
clinical trials



Introduction

Observational studies

|
Any intervention studied is determined by clinical practice and not the
protocol.

Useful to analyze
m Effectiveness: efficacy in real life
m Possible safety concerns and long-term complications
m Patients’ compliance to treatment in real life
m Understudied populations
m Use of treatments (concomitant medication, off-label use,...)
m Rare conditions



Introduction

Observational studies

m Descriptive epidemiology: Monitoring the occurrence of a
disease

m Analytic epidemiology: Studying the risk factors of a disease
depending on an exposure

Clinical studies

Observational

J—
J'

|
Interventional
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Observational studies

The designs

Cross-sectional studies: Exposure and outcome determined
simultaneously

 Exposure
 Outcome |

Present

Cohort studies: Inclusion of exposed and unexposed and analysis of
whether or not they develop the outcome

o, R v

Present

Case-control studies: Inclusion of subjects with and without the
outcome and collection of information on the past exposure

oo i
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Observational studies

Potential biases

Selection bias:

m Distortion in estimating the association between the exposure
and the outcome

m Consequence of how subjects are selected in the study
Example: Case-control study: influence of NSAIDs on colon cancer
Selection bias if the control chosen are patients hospitalized for

arthritis
= Both cases and controls will be exposed to NSAIDs

Information bias:

m Distortion in estimating which is the consequence of
measurement errors or bad classifications of patients



Observational studies

Confounding

Confounders: factors associated with the exposure and with the
outcome studied

B Exposure Bt e

L

i May vary over time éc N

Example:

Drinking coffee
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Standard approaches

Methodology

Adjusting for confounding with multivariate regression
m Include treatment and confounder in the model

Stratification with the Cochran-Mantel-Haenszel method (cmh)
m Comparing crude and stratum-specific associations
HQZOH1 :ORZZ...:ORK:1

Matching

m Controlling confounding by forming homogeneous pairs
regarding the confounder

m Statistical tests for matched data (ex: paired t-test for a
continuous outcome )



Standard approaches

Propensity score methods

Conditional probability for a patient to receive the treatment given
his/her observed covariates

e = P(A,’ = a/|L,)

where
m ¢;: propensity score for subject i
m A;: treatment of subject i
m L;: covariate for subject i

— Estimate e; with logistic regression



Standard approaches

Propensity score methods

Methods using the propensity score:

m Adjustment: propensity score &; is included in the regression
model with the treatment A

E[Y]] = Bo + B1Ai + B8

m Stratification: propensity score is cut in percentiles and the
association is observed in each stratum

m Matching: a treated patient is matched with an untreated patient
with the closest propensity score

m Inverse Probability of Treatment Weighted (IPTW)

10/28



Methodology

Propensity score methods

Inverse Probability of Treatment Weighted (IPTW)
m Calculate a weight from the propensity score for each subject:

1 1
IPTW; = .
" PA=alli=1) &
For a binary treatment: IPTW; = & + 15 @m0

— In the weighted sample (pseudo-population): no confounding = a
usual regression model can be applied (demo)

m Stabilized weights to increase statistical efficiency

P(A,' = a,)

SwW; =
! P(A,’ e a,-|L,- = I,‘)

= P(A = &) x IPTW;

11/28



Methodology

Comparisons

Methods | Strengths | Weaknesses
Multivariate - Simultaneously adjustment for - Adequacy and assumptions
adjustment multiple confounders of the model
- Use of all information in
continuous variables
Stratification | - Simple - Difficult to interpret if multiple
confounders with multiple levels
- Estimation of the effects by stratum - Can cause loss of information or
not remove enough confounding
according to how the stratification is
done
Matching - Elimination of the influence - Difficult to acquire an adequate
of strong constitutional confounders sample size
- Elimination of the influence - Overmatching
of confounders that are hard to measure
Propensity - Simultaneously control for - Difficult to understand
score multiple confounders the results

- Ability to directly see confounding
through distribution of the propensity score

- Measurement of all
relevant covariates

12/28



Standard approaches

Applications: simulated data

m Point-treatment study
m L~ N(10,5): a continuous confounder
m /ogit P(A=1) = —10 + L: a dichotomous treatment
m Y =10A+ 0.5L+ N(—10,5): a continuous outcome
m /=1,..., nsubjects with n = 1000
m 200 simulations

m Objective: estimate the causal effect of Aon Y

m True value: 10

10

logit P(A=1)=—10+1L 6.5

13/28



Standard approaches

Applications: simulated data

Density

= Crude analysis
Multivariate analysis
= Regression on the propensity score
~ Stratification on the propensity score
Matching on the propensity score
= Marginal structural mode|

Parameters estimates

Crude analysis
overestimates the effect

Adjusting on the confounder,
adjusting on the propensity
score, stratification on the
propensity score: similar
results with values centered
around 10

Matching on the propensity
score and IPTW: more
scattered estimates
(Truncating method for the weights)

14/28



Overview

Marginal Structural Models
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Marginal Structural models

Introduction

m Literature search:
m "Marginal structural models and causal inference in epidemiology"”,
Robins JM, Hernan MA, Brumback B (2000), Epidemiology
m "Marginal structural models to estimate the joint causal effect of
nonrandomized treatments”, Hernan MA, Brumback B, Robins JM
(2001), Journal of American Statistical Association

m Marginal structural models (MSMs) are useful when:

Physical activity

=> Relationship between treatment and outcome can be confounded

15/28



Marginal Structural Models

Notations

Notations
m A(t): treatment at time { for subject /
Ai(t) = (Ai(0), ..., Ai(1)) for subject i, treatment history until ¢
L;(t): confounder value at time t for subject i
Li(t) = (Li(0), ...L;(t)) for subject i, covariate history until ¢
V;: subset of time-fixed covariates (V; = L;(0))
Ci(t): censoring indicator for subject i at time ¢
K study duration

Qutcome: Y; for binary or continuous variables and T; for survival analysis

Potential outcome

B Y3: asubject’s binary or continuous outcome had he/she been treated with a
rather than his/her observed treatment A

m T3 a subject’s time-to-event if he/she had followed treatment history a from the
start of follow-up rather than his/her observed treatment history

16/28



Marginal Structural Models

Weights
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Marginal Structural Models

Weights

m Computing the Inverse Probability of Treatment Weights IPTW

t=1,..,K (implementation)

swi(t) = [[ ff(Af(k)\Ai(k - 1), V)

i f(Ai(R)|Ai(k — 1), Li(k))

17/28



Marginal Structural Models

Weights

m Computing the Inverse Probability of Treatment Weights IPTW

t=1,..,K (implementation)

() = [ [AIAG 1), 1

i f(Ai(R)|Ai(k — 1), Li(k))

m Computing the Inverse Probability of Censoring Weights IPCW

0 =TI P[Ci(k) = 0|Ci(k — 1) = 0, Ai(k), Vi]

sw! il i il
P[Ci(k) = 0|Ci(k — 1) = 0, Ai(k), Li(k)]

I

k=0
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Marginal Structural Models

Weights

m Computing the Inverse Probability of Treatment Weights IPTW

t=1,..,K (implementation)

() = [ [AIAG 1), 1

i f(Ai(R)|Ai(k — 1), Li(k))

m Computing the Inverse Probability of Censoring Weights IPCW

0 =TI P[Ci(k) = 0|Ci(k — 1) = 0, Ai(k), Vi]

sw! il i il
P[Ci(k) = 0|Ci(k — 1) = 0, Ai(k), Li(k)]

I

k=0

m Computing the final weights

sw;(t) x sw; (t)

=1 weight per person and per time (sw)
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Marginal Structural Models

Modeling

m Binary outcome: ‘ logit P(Ya = 1) = By + B1cum(a) ‘1
measured at end of follow-up

swi(K) x sw!(K)

m Continuous outcome: ‘ E[Yz] = Bo + B1cum[g] ‘

— Fit a standard GEE linear model giving the time-specific
weight sw; () x sw/ () to each subject

m Survival: ‘/\Ta(t) = Xo(t)exp(yra(t) +12V) ‘
= Weighted pooled logistic regression treating each person-time
as an observation
= Use weights sw;(t) x sw/ (t) for
logit P[D(t) = 1|D(t—1) = 0, A(t —1)] = 0o(t) + 61 A(t — 1) + 62V

Teum(a) = 3K, ax
18/28



Marginal Structural Model

Assumptions

m Exchangeability:

m No unmeasured confounding assumption

m Measure enough joint predictors of exposure and outcome

m Sensitivity analyses (asses the impact of adding further potential
confounders

m Consistency:

m Links the counterfactual data Yz to the observed data (Y, A)
m A subject’s counterfactual outcome under his or her observed
exposure history is his or her observed outcome

Yo=Y

m Positivity:

m The experimental treatment assumption

m Both treated and untreated patients at every level of the confounder
m Specifications of the models:

m Models for initiation of treatment and censoring, given past
covariate and treatment history need to be correctly specified

19/28



Marginal Structural Models

Applications: real-life data

The CREDIT study: a long-term international non-interventional
study in patients with type 2 diabetes, treated with insulin (nitial protocol)

Clinical context:
m Diabetes:
m Chronic disease that can be controlled but for which there is no
cure
m Triggered by a shortage or a deficiency of insulin (hormone
normally produced by the pancreas to help control blood glucose
level)
m When glucose lacks of insulin

= glucose does not give energy to cells and is not absorbed by
them

= its accumulation causes damages to the organs (retina,
kidney,...)

20/28



Marginal Structural Models

Application: real-life data

A binary analysis to study the relationship between CV events
and glycemic control, in presence of a time-dependent
confounder, the diastolic blood pressure

Exposure A(k]

HbAlLc > 7%

{¥as/No)

Exposure A(k+1)

HBALE = 7%
¥esiNo}

m 2,524 patients followed up to 4 visits

m Dataset:
m one row of data per patient for each visit until their time to CV event
m if no CV event: one row of data per visit until censoring

21/28



Marginal Structural Models

Application: real-life data

HbAlc< 7% HbAlcz 7% Total
at baseline at baseline N=2,524
N=143 N=2,381
CVevent N (%) 9 (6.3%) 106 (4.5%) 115 (4.6%)
Age (years) mean(SD) 63.44 (10.01) 61.30 (10.04) 61.42 (10.05)
Sex Men 78 (54.5%) 1,172 (49.2%) 1,250 (49.5%)
Women 65 (45.5%) 1,209 (50.8%) 1,274 (50.5%)

Diastolicblood 79.81 (10.73) 80.97 (11.53) 80.90 (11.49)

pressure mean (SD)

m Only 4.6% of the patients enrolled present a CV event during
follow-up

m Diastolic blood pressure: time-dependent confounder

m Relationship between diastolic blood pressure and cv event
m Relationship between diastolic blood pressure and glycemic control

22/28



Marginal Structural Models

Application: real-life data

Implementation:
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Marginal Structural Models

Application: real-life data

Implementation:

Computing IPTW
m Numerator: PROC LOGISTIC

H outcome: exposure A;(k)
B covariates: previous exposure A;j(k — 1) and baseline variables

m Denominator: PROC LOGISTIC
B same method, adding the confounder history as explanatory variable

Computing IPCW
m same method but outcome: C;(k)
Computing the final stabilized weights

m One weight per patient and per visit
m Binary analysis = only the weight at last visit for each patient is
retrieved (formula)

Fitting final marginal structural model: PROC LOGISTIC with the
weight option: logit P(Ya = 1) = fo + S Zfzo ax
m Y1, a: duration of exposure to an HbA1c value > 7%
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Marginal Structural Models

Application: real-life-data

Parameter Estimate | Standard | Pr > ChiSq
Error
Intercept -3.7579 1.0118 0.0002
Visit 2 | -0.6392 | 0.2826 0.0237
Visit 3 | -1.2237 | 0.3384 0.0003
Visit 4 | -4.5909 0.4643 <.0001

HbA1c 0.2838 0.1233 0.0214

Sex M| 1.5312 1.3011 0.2392
Age 0.0387 0.0151 0.0102
Age*Sex | M [ -0.0241 0.0199 0.2264

24/28
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Marginal Structural Models

Application: real-life-data

Parameter Estimate | Standard | Pr > ChiSq
Error
Intercept -3.7579 1.0118 0.0002
Visit 2 | -0.6392 0.2826 0.0237
Visit 3 | -1.2237 0.3384 0.0003
Visit 4 | -4,5909 0.4643 000

HbA1c 0.1233 | Q.0214

Sex M| 1.5312 1.3011 0.2392
Age 0.0387 0.0151 0.0102
Age'Sex | M | -0.0241 0.0199 0.2264

m OR =1.32[1.01-1.69]
m Significant difference between the exposed and the unexposed
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Marginal Structural Models

Application: real-life data

Comparison with an unweighted model:

Parameter Estimate | Standard 95% Confidence Pr = ChiSq
Error Limits

Intercept -9.7361 1.3187 -12.3207 -7.1516 <.0001
Visit 2 -0.2105 0.2374 -0.6758 0.2549 0.3754
Visit 3 -0.2183 0.2442 -0.6970 0.2604 0.3714
Visit 4 -1.0216 0.3303 -1.6690 -0.3742 0.0020
Sex M 2.2480 1.3572 -0.4120 4.9080 0.0976
Age 0.0579 0.0155 0.0276 0.0883 0.0002

Age‘Sex M -0.0289 0.0207 -0.0694 0.0115 0.1611
HbA1c > 7% 0.3626 0.2317 -0.0915 0.8168 0.1176
DBP 0.0193 0.0089 0.0019 0.0367 0.0293
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Marginal Structural Models

Discussion and perspectives

m Only a few patients with CV event
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Marginal Structural Models

Discussion and perspectives

m Only a few patients with CV event
m Relevant time-dependent confounder

m Assumptions:

m Exchangeability = sensitivity analysis
m Positivity
m Specification of the models

m Other application: marginal structural Cox model vs unweighted
method = Similar results

26/28
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Conclusion

Objective: Statistical methods for observational studies

Looking through the litterature, the propensity score methods
rapidly directed us towards the MSM with IPTW estimator

m MSMs enable time-dependent confounders to be taken into
account

Point treatment study: difference between results obtained

Application on real-life data:

m Results going in the same direction but,
m Non-significant results for the unweighted method

In literature: important difference between marginal structural
models and unweighted methods

27/28
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How to use Cochran-Mantel-Haenszel Test and

Breslow-Day Test

m Calculate crude ORy_px
m Calculate stratum-specific OR’s: ORy_,4|,
m If ORy_4 = ORy = L is unlikely to be a confounder
m If OI’Y_A 76:
m If OR; = OR: = ... = ORx = L may be a confounder
m Apply CMH test of conditional independence: Hy: A and Y are
conditionnally independent

CMH = (O, M1k — H11k)?
>k 0121;(
B Calculate ORyy (if Hy is rejected, ORyy should be # 1)

m [f stratum-specific Or’s differ from each oether = there might be an
effect modification (interaction)

B Apply Breslow-Day test of homogeneity of the OR’s: Hp:
stratum-specific OR’s are equal (homogeneous)

(nje — Mii)? 2
osozzzzim% ~ Khi2(K — 1)
kK i

back



Stratification

A=11] g Mok | Mk
A=0| noik Nook | Motk
’ | Ny Nneok | Nk |

2
m CMH test statistic: M? = %kif(::‘kk)” ~ x?(1), where

B ik = % is the expected frequency of A=1and Y =1 for
L = k assuming the conditional independence holds
— MikMorkNi1kM1 0k
m Var(ng) = =+ niznkin +

m Common odds ratio:

OBy — >k (M11xNook)/ Nk
>k (MokNo1k)/ Nk

back



Paired t-test

m Comparing 2 measures of a quantitative variable realized on the
paired subjects

m Treating the 2 matched samples as one dataset on which the
difference between both measures would have been computed

m H, : themeandifferencebetweenbothmeasuresisnull

m Test statistic: t = %ZS;C‘EEW ~ St(n—1)

n(n—1)

(where SCE4 = 3.7, Diff? — (Zies DI’

n

Hy rejected = significant difference between both outcomes

back



Computation of the unstabilized weights

Proof in a point treatment study

Actual population: njy is the number of patients with the outcome /, under

treatment j and with value covariate k in the actual population

L=1 L=0 Total

A= A=0 A= A=0
Y =1 Ny Mo Ni10 Moo Mgy
Y=0 Mo11 Noo1 Noto Nooo Not++
Total Nyt Nio1 Ni1o Nyoo | Mgyt

Pseudo-population: Njx is the number of patients with the outcome i, under

treatment j and with value covariate k in the pseudo-population

L=1 L=0 Total

A=1 A=01| A=1 A=0
Y=11] N Nio Ni1o Nigo | Nipy
Y=0| Noi Noo+ Noto Nooo | Noir
Total N1 N, o1 Ny 10 Nioo | Nigs



Weights:
For patients with L = 1: When n,44 patients are treated, ny11 have

Y =1 = if all patients with L =1 (n, 1) would have been treated, we
would have:

Ny XMy Ny 1
Nty = =571 = wig X nyqq, where wyy = 22 = so—qr=

back



Association between A and L

L= L=0
A=11 Nyt | Nygo | Nyag
A=0| Nio Nioo | Nio+
Nii1 | Nivo | Nipqr

Objective: show that the proportion of treated who have L = 1 is the

same as the proportion of untreated who have L = 1, i.e. ﬁ‘l = ﬂi{‘)’l
N Nt o
11 W14 14 B 11 +11 Ny
- = —
Niiy  Witnis + Wionygqo oy X Nyt + ,,*Tg X Nyto Myt
N N1 n
o1 _ Wo1/01 n o1 +01 _ N
- _ =
Nioy  Woinyo1 +Woolyoo 250 X Nior + 252 X oo Myvy

Nyo1

back

Ny00




Mathematical dimension

m A process is "causally exogenous or ancillary” if
Ya[TADIA(E - 1)
= Y3 is independent of A

m A treatment is a "statistically exogenous or ancillary” process if

Lty JTAMIAE - 1)

m sw;(t) quantifies the degree to which the treatment process is
statistically nonexogenous through time t
=- numerator = denominator for all t with probability 1 if and only
if treatment process is statistically exogenous
= weighted regression = unweighted analysis only if A(t) is
statistically exogenous
(back)



Truncation method for the IPTW method

In the simulated study, some weights computed for the MSM are
extreme:

m Summary of the weights for the 118" simulated dataset:

Min | 15" qu. | Median | Mean | 3™ qu. | Max
046 | 049 | 054 | 559 | 0.62 | 4649

= Parameter estimate: -3.15 (true value: 10)

m Summary of the weights for the 15! simulated dataset
Min | 15" qu. | Median | Mean | 3 qu. | Max
048 | 051 | 053 | 091 | 0.63 |747
= Parameter estimate: 10.65

(back)



Initial study protocol of the CREDIT study

m Multicenter international non-interventional longitudinal study
with a 4-year follow-up per patient carried out on 3,060 subjects

m Visits done according to clinical practice

m Original objectives:
m Observation of medical practice in the real life, over a 4-year
period, in people with type 2 diabetes treated with insulin
m Evaluation of the evolution and relationship between glycemic
control and the risk of cardiovascular events in type 2 diabetic
patients treated with insulin, taking into account known
cardiovascular risk factors



Initial study protocol of the CREDIT study

Inclusion criteria

Exclusion criteria

- Male or female, age > 40 years

- With type 2 diabetes

- Time from diagnosis of diabetes

to insulin initiation > 1 year

- Treated with insulin (all regimens®)
for more than 1 month and less than
6 months prior to study entry

- With an HbA1c value within 3 months
prior to insulin initiation

- Insulin initiated with an intention of
a long term treatment

- Informed consent must be obtained
in writing

- Patients able to be followed over a
long period of time

- Type 1 diabetes

- Not insulin treated type 2 diabetes

- Secondary diabetes (pancreatic history,
steroids therapy, endocrine diabetes)

- Current temporary insulin therapy
(gestational diabetes, pancreas

cancer, surgery, clinical trial)

- Pregnancy at inclusion

(back)




Marginal Structural Model

Inverse Probability of Treatment Weights (IPTW)

m Binary treatment
m For the denominator of sw;(k):

logit P(A(k) = O[A(k — 1) = 0, L(k)) = ao(k) + a1 L(k) + a2V

HZ:O pi(u) if subject i did not start treatment up to time k
(1 = pi(t)) ]'[fl‘:g pi(u) if subject i started treatment at time ¢ for 0 < t < k
1 —pi(0) if subject i is treated at time 0

m For the numerator of sw;(k): remove L(k = from the logistic
model
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Marginal Structural Models

Application: real-life data

A time-to-event analysis
= Application of a marginal structural Cox model

Implementing final weights sw;(t) x sw,*(t): same method as
previously

Fitting final marginal structural Cox model

m PROC GENMOD with the scwgt option
m Unstructured correlation matrix
m repeated option
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Applications and resutls

Real-life data

Parameter Estimate | Standard | 95% Confidence | Pr> |Z]
Error Limits
Intercept -1.7774 1.0893 99123 -5.6424 | <.0001
HbA1c = 7% 0.2180 0.2726 -0.3162 0.7522 | 0.4238
Visit 2 -0.1487 0.2413 -0.6217 0.3243 | 0.5378
Visit 3 -0.1768 0.2554 -0.6773 0.3238 | 0.4888
Visit 4 -0.9356 0.3446 -1.6110 -0.2603 | 0.0066
Sex M 2.2918 1.3606 -0.3750 4.9586 | 0.0921
Age 0.0527 0.0157 0.0219 0.0834 0.0008
Age”Sex M -0.0301 0.0207 -0.0706 0.0104 | 0.1457
Parameter Estimate | Standard | Pr= ChiSq | Hazard
Error Ratio
Age 0.0414 0.0097 < 0.0001 1.042
Sex M 0.3641 0.1891 0.0541 1.439
HbA1c >7% 0.3563 0.2309 0.1228 1.428
DBP 0.0195 0.0089 0.0292 1.020

Table: Unweighted method

B Similar results (weights boxplot)
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Distribution of the final weights
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