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Survival analysis

> In healthcare, time periods are often of interest: time to relapse of
Leukemia patients, time to onset of cancer, time to death...

> Formally, we seek to study a positive continuous time to event variable
T*, the time difference between study entry and event of interest.

Beginning of the study Entry in the study Event of interest

t;O - 2
~"

T*

> Data is collected through long-term studies = Problem: We do not

always witness the event of interest because of censoring (end of
follow-up, dropout or delayed entry...).
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Background in time to event analysis: right censoring

Study start End of study
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Notations

> For an individual i € {1,..., n}, we denote
® T the time to event of interest
® (; the censoring time
® T; =min(C;, T) the observed time

e A; =1(T; < ) the censoring status

® Z; the covariates (in RY).

> Assumption: C; 1L (T, Z;)

> The outcome of interest (T;,4;) is in RT x {0,1} and is incomplete
because of censoring.

/\ Censored data # Missing data
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Literature review: Survival models

> Survival function : S(t) =P(T* > t)
® Kaplan-Meier estimator (1958)
< Conditionally on covariates : S(t | Z) =P(T* > t | 2)
® Cox model (1975)
® Random survival forests (Ishwaran, 2008)
> RMST (Restricted Mean Survival Time) : uf = E[T*A7] = [§ S(t)dt

< Conditionally on covariates :

1 (Z) = B[T* A7 | 2] = /OT S(t| Z)dt

® Proportional and semi-parametric proportional hazards model
(Karrison, 1987, Zucker, 1998)

® Pseudo-observations and GLM (Andersen et al., 2004) or neural
networks (Zhao, 2021)
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Objective

Aim
> Predict the RMST (Restricted Mean Survival Time) conditionally
on the covariates:

u(2) =E[T* A7 | 2] = /0 S(t| Z)dt

Question

How performing is the method combining
pseudo-observations with the super learner ?

> Pseudo-observations : Andersen, 2004

> Super learner : Van der Laan et al., 2007
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Pseudo-observations and conditional RMST

> Pseudo-observations are a transformation of censored data into data
that can be handled as uncensored. They are defined by

fri = n/OT S(t)dt — (n— 1)/OT S7i(t)dt

where § is the Kaplan-Meier estimator using all n data and 5~/ is the
same estimator without the i-th subject.

> Jacobsen and Martinussen (2016) showed that
Eliri | Z] =E[T; A7 | Zi] + op(1).

The idea is then to replace the incompletely observed T;* A T by i ; and
regress them against the covariates.
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Motivation behind the super learner

> Which regression algorithm to use ?

< Cross-validation can select an optimal regression method in a list of
candidate learners: Discrete Super Learner

> Can we draw information from a whole library of learners ?

< Fit a weighted combination of many learners: Continuous Super
Learner
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Super Learner (Van der Laan et al., 2007)

1. Split data 2. Train each 3. Predict the outcomes in the
into V blocks candidate leamer validation block based on the
@ corresponding training block
2 candidate learner
» . —»| Im |DISIA| ... | RF 4. Model selection and
fitting for the regression
z b:
— o of the observed
Im_| DISIA RE_ || Y outcome onto the
1 1 1 1 predicted outcomes
2 2 2 2 from the candidate
B learners
o e[ [osA[ [ ] ,
| i "l 5 |7) =l )
v —> v v v v
=
2
— [ m Josa] .. ] AF ] 5. Evaluate super learner
@ by combining predictions from
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with m(z;B) (steps 1-4
0. Train each (=B (step )
candidate learner on
entire dataset ¥

[ m Jorsa] . [ RF > Super Leamer
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Interest of the Super Learner

> Van der Laan et al. (2007) showed that the super learner performs
asymptotically as well as or better than any of the candidate learners.

> Golmakani and Polley (2020) adapted the super learner to handle
censored data and apply survival estimation methods.

> By combining pseudo-observations with the super learner, we can take

advantage of a large variety of learners usually used in the context of
uncensored data.
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Performance on simulations: E[(T* A7 — ﬁT(Z))z]

> Linear model with interactions for event times, and uniform censoring
(=~ 33% censoring).
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Evaluation methods for real datasets

> The classic MSE
E |:(T* AT — IaT(Z))z ’ Dtrain:|

can not be computed on real datasets as we do not know event times for
censored data.

> IPCW (Inverse Probability Censoring Weights) approach: We assign
censoring weights to the observations.

< These weights are built on an estimator G of the censoring survival
function
G(t]Z2)=P(C>t|2).
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IPCW estimation of the MSE

> We adapted an IPCW estimator from Gerds and Schumacher (2006)
called WRSS (Weighted Residual Sums of Squares) to estimate the MSE

MSE(r, fir, S) = E[(T* A7~ 1(2))° | Deran

resulting in the following estimator:

WRSS(, fir, G) *Z(T AT—uT(Z))2@,

( —|Z') (T|Zi)

> We proved that this estimator is consistent under certain conditions.

Ariane Cwiling Laboratoire MAPS5, Université Paris Cité

Machine learning for survival data prediction: Application of the super learner on pseudo-observations 17 / 24



Performance assessment
[e]e]ele] }

Breast cancer dataset

> German Breast Cancer Study: data from patients with primary node
positive breast cancer (1984-1989). Available on R.
— 686 data, 8 covariates, 56% censoring
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Conformal inference for uncensored data

> When the outcome is not censored (consider T* known), a method to
build prediction intervals is to use conformal inference. The goal is to
create a prediction band C C RY x R based on the observations such that

P(Ty g AT € C(Znt1)) 21—

> Several algorithms exist, we focused on the split conformal algorithm:

Algorithm 1 Split conformal prediction

1: Input: Data (T7,Z), i =1,...,n, miscoverage level a € (0,1), regression
algorithm A, split coefficient p € (0,1)
Output: Prediction band, over z € R?
Randomly split {1,..., n} into subsets Z1, 7> of sizes n1 = pn, no = (1—p)n
fir = A{(T", Z) i € Tu})
R =|T N1 —[p-(Z)|,i € I»
d = the kth smallest value in {R : i € I>}, where k = [n2(1 — )], i.e.
the (1 — a)-quantile of the empirical c.d.f. of the residuals defined for all
tERby Ro(t) =1/m Y, 1(R7 <)
7: Return Coie(2) = [fi(2) — d, fi(z) + d] for all z € R?

AR
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Conformal IPCW

> We propose a new algorithm combining split conformal and IPCW:

Algorithm 2 Split conformal IPCW prediction

1: Input: Data (T;, A, Z), i =1,...,n, miscoverage level o € (0,1), regres-
sion algorithm A for the RMST, regression algorithm B for the censoring
function G, split coefficient p € (0, 1)
Output: Prediction band, over z € R?
G=B({(T:,Ai,Z):ie{1,...,n}})
Randomly split {1,..., n} into subsets Z1, 7> of sizes ny = pn, no = (1—p)n
fir = A{(Ti, A1, Z1) 1 i € T })

| T _n g ~ . UT<7)A; L(Ti>T) -
Ri=|Ti AT — j-(Z)] and @; = croz) T eriz) € I .
d = the (1 — a)-quantile of the empirical c.d.f. of the residuals defined for
all t € R by RS () = 1/(Xieq, @) Yieq, LRI < 1)@
8: Return CS(2) = [i-(2) — d, fir(2) + d] for all z € RY

Noasren

> We proved that for a new i.i.d. pair (T, Znt1)
P(Tya AT € Coie(Zni1)) —— 1 -«
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Conformal IPCW

> Simulations: n = 3000 data allocated at 60% to Z; and at 40% to Zo.
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Figure 1: Coverage level 1 — « given Figure 2: Prediction intervals at
to the algorithm against observed coverage level 90% compared to
coverage on an independent set. true event times restricted to 7.
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> We established that fitting a GLM on pseudo-observations or on true
event times is asymptotically equivalent in terms of MSE.

< Simulation results give us good confidence in the extension of this
result to the super learner.

> We adapted the estimator from Gerds and Schumacher (2006) to
approximate the MSE for real data sets, and proved that their
convergence theorem holds.

< Though results on real data appear mixed, it may be due to the small
size of the dataset.

> We combined the split conformal algorithm with the IPCW approach to
compute prediction intervals for censored data. We proved that this
procedure is asymptotically valid.

— We are currently working on extending this algorithm to the
estimation of the importance of variables in a prediction model.
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> We established that fitting a GLM on pseudo-observations or on true
event times is asymptotically equivalent in terms of MSE.

< Simulation results give us good confidence in the extension of this
result to the super learner.

> We adapted the estimator from Gerds and Schumacher (2006) to
approximate the MSE for real data sets, and proved that their
convergence theorem holds.

< Though results on real data appear mixed, it may be due to the small
size of the dataset.

> We combined the split conformal algorithm with the IPCW approach to
compute prediction intervals for censored data. We proved that this
procedure is asymptotically valid.

— We are currently working on extending this algorithm to the
estimation of the importance of variables in a prediction model.

Thank you for your attention!
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Pseudo-observations and GLM for conditional RMST

> Let g be an invertible function and suppose for all k =1,...,n,
TinT =g(Z7 Bo) +ex, Elex | Z] =0, Ele} | Zi] = o>

> Given an estimator 3, of 8 and a test individual {TF AT, Z:}
independent from the training set, the mean squared prediction error can
be decomposed into

E[(Ty AT —g(Z] Ba)) | Z2)
= Bias(g(Z/ ) | Z:)? + Var(g(Z[ ) | Z:) + o

> Classic setting without censoring: using a GLM estimator, we fit the
model on the true event times T} A T.

* Bias(g(Z/ n) | Z:) = 0
* Var(g(2]Ba) | Z) —— 0
> Finally : E[(T; A7 — g(ZT Bn))? | Z] —— o*.
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Pseudo-observations and GLM for conditional RMST: new results

> Let g be an invertible function and suppose for all k =1,...,n,
TinT =g(Z7 Bo) +ex, Elex | Z] =0, Ele} | Zi] = o>

> Given an estimator 3, of By and a test individual { T} A 7, Z;}
independent from the training set, the mean squared prediction error can
be decomposed into

E[(Ts AT —g(Z] Ba)) | Z2]
= Bias(g(Z/] ) | Z:)? + Var(g(Z[ ) | Z:) + o

> Setting with censoring: using a GLM estimator, we fit the model on the
pseudo-observations fi k.

* Bias(g(Z/ b)) | Z0) —— 0
o Var(g(ZT53n) | Z2) ——0
> Finally : E[(T; A7 — g(ZTBa))? | Zi] —— o2,
n—o00
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IPCW estimation of the MSE

> Corollary of Gerds' and Schumacher’s theorem: Let 7 be a point in
time where G(7 | Z) > € > 0 almost surely. Let G be a model for the
censoring distribution and G,, be uniformly consistent i.e.

-
sup {/ / {Gu(s | 2) — G(s | z)}PX(ds,~,dz)} — 0.
Geg ~ Jr Jo n—oo

Then if the survival model is consistent and correctly specified, if the
censoring model is correctly specified, if the estimator is bounded and
under conditional independence,

N

sup |WRSS(r, fir, G,) — MSE(7, i, S)| —— 0.

<T n—o0
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Conformal IPCW

> Let g1, be the (1 — a)-quantile of the true c.d.f of the residuals
defined for all t € R by

R(t) =P(R" < t| D(Th)),
where R* = |T* — fi,(Z)] and D(Z1) = {(T;, A, Z;),i € I }.

> Let @f_a be the (1 — «a)-quantile of the empirical c.d.f. defined for all
t € R by
Iy 1
RE(t) = =+ ) 1(R < t)w;.
ZIGIZ Wi €T

> We established that if G is a consistent estimator, then for all
a € (0,1) and conditionally on D(Z;)

é\llea L} qi—«
na—00
hence for a new i.i.d. pair (T, 1, Zns1)
P(T:Jrl AT E C(Zn+1)) —>—> 1—oa.
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Weights in the Super Learner

> Weights are computed using
non-negative least squares based
based on the Lawson-Hanson

algorithm and normalized so weights “ i

sum to one. i ] 2 ored 3
£ = o v

> Here the weights are 0.5 for =

prediction 1, 0.5 for prediction 2 and %

0 for prediction 3. Indeed, even if R B ’

prediction 3 is the closest to reality, T ’ v

the optimal combination is ° ‘ ‘ v |

0.5 x prediction 1+ 0.5 x prediction 2. 1 2 3 4

Individual
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Limits of the C-index

> The output of the C-index can be

misleading: it does not capture the
quantitative difference between '
times and predictions. It can be very 7
encouraging when it should not and 5
vice versa. = 7 ’
a .
> Recent papers like the article from o * /
Blanche et al. (2018) question the 7
validity of the C-index. o /
T T T T T
0 1 2 3 4
T
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Simulation model
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